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Abstract. Computer tomography (CT) has been routinely used for decades in clinical neuroimaging.
Compared to Magnetic resonance imaging (MR), CT is more readily available and more
cost-effective, but the soft tissue contrast is much lower. In brain CT images, the unclear soft-tissue
boundaries and the high noise level hamper accurate segmentation of the gray and white matter,
leaving obstacles for the subsequent geometrical quantification of brain structures. To address this
challenge, this paper specifically acquires same-patient CT and MR image pairs and proposes a
multi-task learning model for simultaneous tissue segmentation and modality transfer. We aim to
use the modality transfer task to learn corresponding MR and CT features which assists the
segmentation task to achieve more accurate results than single modality learning. Moreover, we
add a Shannon entropy loss function to the training loss to further combat the high noise influence
and reduce the fragmentation problem of the segmentation results. Experimental results proved that
our multi-task framework achieves more accurate segmentation than the single segmentation task,
and the Shannon entropy loss results in much fewer broken brain regions than the state-of-the-art
(SOTA) U-net method. Our study provides a useful tool for clinical neural CT image analysis.
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1. Introduction
With the aging of the population and the growing number of age-related mental diseases,

craniocerebral examinations have become more and more important for early disease prevention
and diagnosis. Brain CT, especially high-resolution brain CT, is a commonly used tool for brain
disease screening. Compared with cranial MR images, brain CT has the advantage of easy access
and a large inventory [3], but the soft-tissue contrast and signal-to-noise ratio are relatively lower.
The popularity of brain CT results in a large number of high-resolution brain CT images for clinical
examination and diagnosis, which increases the burden of the human reviewer [4]. To perform
computer-aided diagnosis based on the brain CT images, automated segmentation of brain regions
is a prerequisite step. Since CT doesn't have good soft tissue contrast as MR, it is almost infeasible
to segment sub-cortical brain regions from CT images. Therefore, the segmentation of entire
gray-and-white matters becomes a practical clinical need.

Despite the rapid development of computer-assisted medical image segmentation technology,
especially deep learning technology in the last decade, there is still no ideal algorithm for gray and
white matter segmentation from CT images. The reason is that the contrast between gray and white
matter in brain CT images is particularly low thus the boundary is very blurred [2][19], which we
can see in Figure 1. Besides, the high noise level makes it even more difficult to achieve accurate
segmentation results. Due to these problems, even experienced physicians have difficulty in
manually labeling white and gray matter from CT images. Therefore, the labeling required for deep
learning training is difficult to produce, hampering the implementation of deep learning methods in
this task.
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(a) (b)
Fig. 1 Comparison of brain CT image and brain MR image. (a)The brain CT image. (b)

The brain MR image.

Unlike CT-based segmentation, gray and white matters segmentation from MR images is already
a well-solved problem, there are many existing solutions for MR-based brain region segmentation,
such as FreeSurfer [9], SPM [18], BrainSuite [5], etc. Nevertheless, there are still a few studies
based on CT images. li et al. concluded that the continuous improvement of CT scanning quality
leads to increasing feasibility for soft tissue segmentation from CT [11]. Qian et al. [1] used the
active contour model for cerebrospinal fluid segmentation of brain CT images. and Manniesing [20]
proposed a CT-based segmentation method with a post-correction process. Yahiaoui et al. [14]
targeted the segmentation of ischemic stroke regions on brain CT, and Li et al. [7] studied the
segmentation of hemorrhagic lesions. In summary, most of the existing studies on brain region
segmentation algorithms are based on MR images, while most of the segmentation algorithms for
brain CT focus on specific diseases, rather than gray and white matter regions.

Considering the large amounts of daily acquired brain CT images and the clinical need for white
and gray matter segmentation, it is highly demanding to develop automated algorithms for
CT-based gray and white matter segmentation. Although the low soft-tissue contrast and high noise
level impose difficulties for accurate segmentation, the recent progress in multi-task deep learning
shed light on novel solutions to this problem. Multi-task learning puts several tasks requiring
similar data features together for simultaneous deep network training so that different tasks help
each to achieve better performance than any single task alone. For medical image segmentation, a
series of studies have shown that multi-task learning effectively promotes inter-task cooperation and
improves overall segmentation accuracy [6][8][13].

In this study, we take advantage of the multi-task learning strategy to overcome the low soft
tissue contrast and high noise interference and improve the segmentation accuracy of gray and
white matter from brain CT images. Through simultaneous learning of CT segmentation and
CT-to-MR modality transfer, the network learns the corresponding latent features between the two
modalities, therefore exceeding the performance of learning from a single modality (CT). Our study
has the following main contributions:

Unlike many existing unpaired domain adaption methods, our study especially acquired 27 pairs
of same-patient CT and MR images. In this way, pixel-level strong inter-modality feature
correspondence is established, so that the network learns the corresponding high-contrast MR
features to promote the segmentation accuracy of CT images.

The acquisition of paired MR and CT images solves the labeling difficulty of CT images. We
used the well-recognized FreeSurfer software to segment the MR images and map the tissue labels
into CT image space via inter-modality registration. Therefore, the training labels for the CT
segmentation network are obtained.
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Fig.2 Workflow of the proposed method for making brain CT labels.

We overcome the high noise interference in the CT images by adding the Shannon entropy loss
which encourages the high confidence network. As a result, the low confidence segmentation
caused by the noise is removed and the segmentation result becomes more compact.

2. Method
2.1 Image dataset

The dataset for this study was specially acquired pairs of brain CT and MR images of 27 normal
subjects, i.e., each of the samples has corresponding CT and MR images of the same patient. First,
we used FreeSurfer to segment the brain regions of the MR images to obtain the white and gray
matter labels. Then, using rigid registration, the MR images are aligned to the corresponding CT
images and the segmentation labels are mapped into CT image space via the rigid transformation
resulting from the registration. This study focuses on 2D image segmentation thus 2260 2D slices
are exacted from the 27 image series, each containing one brain CT slice, one label map, and one
MR slice aligned to the CT space. The size of each slice image is 512×512. We use the CT image as
the input of the multi-task network, the white matter, and gray matter labels to supervise the
segmentation task, and the aligned MR image to supervise the modality transfer task. Figure 2
shows the flow chart for making brain CT image segmentation labels.

2.2 Network architecture
Our end-to-end multi-task network architecture is shown in Figure 3. The network contains one

encoder part and two decoder branches for the segmentation task and the modality conversion task,
respectively. The two tasks share the same encoder containing four down-sampling layers, such a
structure fully acquires multi-scale information for feature extraction of the brain CT. The two tasks
have their independent decoders, and both contain four up-sampling layers. The image
segmentation and modality transfer tasks, in turn, drive the encoder to extract the common features
required for both tasks, thus improving the performance of each task by learning relative features
from the other task.

2.3 Loss function
For the segmentation task, we use a hybrid loss function, including a cross-entropy loss term [10]

and a Shannon entropy loss [15] term, respectively.
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Fig.3 The architecture of the proposed multi-task learning network model.

The cross-entropy loss function is a commonly used loss function for image segmentation, which
calculates the cross-entropy between the network prediction probability and the ground truth label:

��� =− �=1
� ��log (��)� , (1)

where M represents the number of segmentation classes, �� represents the one-hot encoding of
the corresponding pixel labels, and �� represents the prediction probability of the neural network
that the pixel belongs to that species. For the whole image, the cross-entropy loss of all the pixels is
averaged.
In addition to the conventional cross-entropy loss, this paper introduces the Shannon entropy loss

function to enhance the prediction confidence of the segmentation task:
��� =− �=1

� ��log (��)� , (2)
where �� represents the prediction probability of the neural network for the pixel belonging to

each class. For the whole image, the Shannon entropy loss of all the pixels is averaged. We adopt
the Shannon entropy loss to encourage networks to make more confident predictions, and to combat
the low prediction confidence caused by the high CT noise.
The overall segmentation loss function is the weighted sum of the cross-entropy loss and the

Shannon entropy loss:
���� = ���� + 1 − � ���, (3)

where � is the factor that adjusts the ratio of the two loss functions.
For the modality transfer task, the SSIM (Structural Similarity) loss function [12] is used in this

paper. The SSIM index is often used to measure the structural similarity between two images. The
SSIM index is sensitive to the perception of local details:

���� �, � = 2����+�1 2���+�2

��
2+��

2+�1 ��
2+��

2+�2
, (4)

where �� and �� represent the pixel means of the predicted and labeled images, respectively.
�� and �� represent the standard deviations of the predicted and labeled images, respectively. ���
represents the covariance of the predicted and labeled images. �1 and �2 are constant terms
preventing the divisor from being zero.
The corresponding SSIM loss function is then defined as

������ = 1 − ����. (5)
The overall loss function of the model is defined by the following equation:

���� = ����� + 1 − � ������, (6)
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where � is the factor that adjusts the ratio of the two loss functions.

2.4 Model training
In this study, the brain CT images input to the network are intercepted with grayscale between

[20,60] and the MR images aligned with the CT images are intercepted with grayscale between
[100,500] and normalized respectively. We take 0.5 for both � and � in the loss function. We
randomly select 2000 2D slices from the dataset as the training set and the remaining 260 slices as
the test set. The model training process uses Adam optimizer to optimize the parameters of the
model, and the learning rate is set to 1x10-4, and the learning rate decay with multiple steps is also
set. The model was trained on two 3090Ti graphics cards manufactured by NVIDIA and built using
PyTorch 1.9.

3. Result And Analysis
For evaluation, we compared the proposed method with the state-of-the-art (SOTA) U-Net

model [17] based on the 260 test slices. To verify the contribution of the modality transfer task and
the Shannon entropy loss function, we also conducted ablation studies to compare our method with
the multi-task learning without Shannon entropy loss, and the single task segmentation with the
Shannon entropy.

We chose the Dice coefficient [16] to evaluate the segmentation accuracy, which is defined as
���� = 2 |��∩��|

�� +|��|
, (6)

where �� is the brain area obtained by network prediction and �� is the label obtained by
mapping the FreeSurfer segmentation of MR image into the CT space. A dice coefficient close to 1
indicates an accurate segmentation and 0 indicates completely inaccurate segmentation.

Table 1 reveals that our method obtains the overall highest Dice in comparison with the other
three methods. Compared with the U-Net network, we achieved a Dice improvement of 0.03 and
0.02 for white matter and gray matter, respectively. Ablation studies removing either the
modality-transfer task or the Shannon entropy loss resulted in a drop in the Dice coefficient. It is
interesting to see that the Shannon entropy loss contributes slightly more than the modality transfer
task, but this should be further validated with more test data in the future study.

Table 1. Comparison table of Dice coefficients
Method White matter Gray matter
U-Net 0.71±0.05 0.65±0.04

U-Net + Shannon
entropy loss 0.74±0.04 0.67±0.04

U-Net + modality
transfer 0.73±0.04 0.66±0.04

Our method 0.74±0.03 0.67±0.04
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Figure 4 shows the segmentation results of the four methods at different anatomical positions. We
demonstrate the registered MR and the FreeSurfer labels (the ground truth) along with the input CT
images. It can be seen that our method produces visually closer results to the ground truth.
Compared to the original U-Net result, the addition of Shannon entropy loss results in fewer broken
regions, while the multi-task learning also helps to produce more accurate segmentation, especially
for the complex-shaped white matter region.

4. Summary
This study addresses the difficult CT-based gray and white matter segmentation problem using

multi-task learning based on specially acquired CT-MR image pairs of the same patients. Using the
CT-to-MR modality transfer as an auxiliary task, the corresponding MR image feature is learned by
the network to promote the segmentation of the CT image. We also added the Shannon entropy to
the loss function to overcome the high noise interference. This work has potential value for
improving the data analysis ability for clinical brain CT images.
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