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Abstract. This paper implements an ICP registration algorithm that aligns mul- tiple 3D scans into a
common coordinate system. To better visualize the result, we calculate the vertex valence using a
triangle mesh and visualize the 3D object in color based on the vertex valence. The initial job of im-
plementing the ICP algorithm is to evenly sub-sample the 3D scans to in- crease the calculation
speed, compute the correspondence, and remove the bad corresponding pairs based on distance
threshold and normal compat- ibility. Subsequently, perform the registration process with
point-to-point and point-to-surface registration, which transforms the ICP equation by solving a
matrix equation with a linear constraint. The result shows that both methods recreate a complete 3D
object, but the point-to-surface method converges much faster.

Keywords: Iterative closest point (ICP),3D registration, linear transformation, sub- sampling,
point-to-point constraint, point-to-plane constrai.

1. Introduction
The application of geometric processing in daily life is becoming increasingly widespread.

Visual effects, augmented reality, computer animation, and other related fields are some of their
applications. All of these applications involve the use of methods that are part of geometric
modeling. This term refers to the methods and algorithms that are used to represent and process
geometric objects. Reconstruction will be one of the most significant aspects of geometric
processing, particularly for processing three-dimensional objects. In real-world circumstances, the
reconstruction process typically involves scanning 3D ob- jects. To make better use of them, we
need to do scan matching or point cloud registration to align those 3D scans into a full model.
However, the conven- tional ICP technique employs a non-linear method, which requires a
significant proportion of the resources available for computing. Consequently, the purpose of this
work is to analyze a linear transformation of the ICP algorithm that incorporates point-to-point as
well as point-to-plane constraints. The following sections will evaluate the related work in this area,
elaborate the methods, and analyze the results.

2. Related work
One of the most famous algorithms in the 3D registration process is the ICP algorithm

introduced in [1]. It is widely used in matching each data point on a 3D scan to the closest
corresponding point on the other scan. The ICP algorithm is so important that many other
algorithms are constructed on the original ICP algorithm, and Rusinkiewicz and Levoy [2]
conducted a survey discussing those variants of the ICP algorithm. Similar algorithms also find the
transformation between the different views, such as Chen and Medioni’s algorithm [3].

The ICP algorithm and its variations have remained quite popular in recent years. For instance,
the voxel lattice is used to re-sample the point cloud data, and the k-d tree is employed to improve
the computation of the normal vector to address the issue that the traditional iterative closest point
technique converges slowly [4]. [5] expands the NDT registration workflow by learning and
predicting per-point semantic labels with PointNet, a deep neural network for segmenting and
classifying point clouds. Pose interpreter networks for 6-DoF object pose estimation are introduced
in [6]. An innovative method for model-based 6D posture refinement in color data is presented in
[7]. The system provides 3D pose estimate accuracy that is above state-of-the-art and recovers
dense 3D hand forms, according to experiments employing three RGB-based benchmarks. Each of
the aforementioned technical elements significantly increases accuracy [8]. Deepest Closest Point
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(DCP), a learning-based approach proposed by [9], draws inspiration from current developments in
computer vision and natural language processing to handle local optima and other challenges in the
ICP pipeline. The first quick and verifiable approach for registering two sets of 3D points in the
presence of several outlier correspondences is proposed by [10].

The basic ICP algorithm proposed by Besl and McKay [1] includes the pro- cess of matching
each data point to its closest point in the other data scans and constructing an error function of the
corresponding pairs. The error function can be considered a point-to-point error metric that
calculates the sum of the squared distance between the data pairs and tries to find the minimum of
this value. The process is iterated until it converges and stops changing. Chen and Medioni [3],
however, propose a method utilizing a point-to-plane error metric that minimizes the sum of the
squared distance between a point and the corre- sponding tangent plane of its data pair. This error
metric can be solved using a nonlinear least squares method such as the Levenberg-Marquardt
method [11], but it is hard to calculate compared to a linear model. Although the original
point-to-point ICP algorithm is well known, it is observed that a point-to-plane ICP has a much
faster convergence rate [2].

Considering the complexity of solving both point-to-point ICP and point- to-plane ICP in a
nonlinear least squares method, this report will focus on proposing a way to convert the nonlinear
error metric in solving the trigono- metric function into a rotational matrix. The central idea is
proposed in [2]: if the rotation between two tangent planes is small, we can approximate the

nonlinear least-squares optimization problem by changing sin θ to θ and cos θ to
1 in the rotation matrix, thus getting rid of the nonlinear trigonometric func- tion, and rewrite the

equation into a general form of Ax = b where A shows the overall transformation by combining
translation vector and rotational matrix.

3. Method
3.1 Basic ICP algorithm

The typical ICP algorithm for 3D object data scans follows a procedure:
Step1: Select some random points on a 3D data scan.
Step2: Match each data point to the closest point on the other scan, using a data structure such as

a k-d tree.
Step3: Reject corresponding data pairs with a distance greater than a large threshold or the

normal compatibility does not satisfy.
Step4: Construct error function: E(R, T ) = Σn i=1|(|Rpi + T − qi|)|2 and minimize the equation where p and

q represent the data points of two different sources, and R and t represent the rotational and
translation matrix[1].

The translation matrix T and rotational matrix R assuming matrix T takes in parameters (tx,ty,tz)
and matrix R takes in parameters (α,β,γ) is shown in equation 1 and 2, rij with row number i and
column number j is calculated by

a range of trigonometric functions illustrated in Eq.3:
1 0 0 tx

T (tx, ty, tz)=0 1 0 ty (1)
0 0 1 t
0 0 0 1

(2)
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(3)

As shown in Eq.3, we need to figure out parameters α, β, γ, which are related to trigonometric
functions, so it can not directly apply linear least-square cal- culation, which is generally more
efficient than non-linear calculation [12]. As a result, our proposed method is designed to modify
the procedure to utilize a linear transformation to eliminate the nonlinearity of the sum-of-square
cal- culation for the error function, simplifying the calculation. The modified ICP algorithm now
consists of the following:

Step1: Selecting data points from 3D source object
Step2: Matching data points to the target point or tangent plane
Step3: Weighting the correspondences
Step4: Rejecting bad pairs
Step5: Compute error metric
Step6: Minimize error metric
The detailed explanation of each step will be expanded in the following sections 4.2, 4.3, and

4.4.

Figure 1: Result of Uniform sub-sampling

3.2 Uniform Sub-sampling
We choose to apply uniform subsampling to efficiently choose the data points in order to

decrease the quantity of work and hasten the registration procedure. ”Uniform subsampling” refers
to sampling data points at uniform intervals. The work is completed by repeatedly going through all
the data points and discarding any candidate data points that are larger than a predetermined radius
or threshold of all other points that have already been sampled. We use a k-d tree data structure that
is easy to find using the ANN library. Then we used ANN to locate the closest neighbor, establish
communication, and ultimately remove the border correspondence. Figure 1 displays the sampling
results in graphic form. The blue dots represent the data points after uniform sampling, while the
green portion represents the newly arriving data scan.

However, they might be meaningless if two data pairs are extremely distant from one another or
come from two tangent planes with sharp angles. Exam- ining those faulty data pairs would be
pointless because it would prolong the registration process or potentially lead to inaccurate findings.
We should prune correspondences based on these two scenarios—significant separation and poor
normal compatibility—to consider both. We set up a threshold, and for each data pair, if the
distance exceeds the threshold, we exclude the data pairs from the correspondence list to prune
correspondence based on the distance. The threshold in our experiment is set at five times the
typical distance between the vertices of the triangular meshes of the data points.

The final result can be viewed in Figure 1.
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3.3 Point-to-point optimization

We must resolve the issue of translating the error function indicated in sec- tion 4.1 into solving
Ax = b in linear constraints after making the necessary preparations to change the data for accurate
and quick registration. The most crucial step in such a change is using a linear transformation. To
eliminate the trigonometry routines and linearize the rotating matrix parameters. We can approach
sin x = x and cos x = 1 if we assume that minimal angles result in a

minimal rotation. The assumption must be accurate because we already reject undesirable pairs
during the sub-sampling procedure to increase accuracy and prune correspondence. A new rotation
matrix R is acquired following the linear transformation, as illustrated in Eq.4.

Multiplying the T translation matrix with the new R matrix creates a new matrix M that
represents the complete transformation:

(4)

(5)

This M matrix shows how a specific point on the source scan would transform

to the target scan, so we find . Afterthe matrix multiplication and
transforming it into the form Ax = b with x = (α β γ tx ty tz)T , we would obtain a n ∗ 18 matrix
where n represents the size of the input source points. The parameters of matrix A are shown in
Eq.6:

The corresponding b matrix is illustrated in Eq.7:

(6)
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(7)

With a linear equation Ax = b given the parameters above, we can solve it by applying SVD
(singular value decomposition) [11]. However, we can likewise use Cholesky decomposition
instead since A is a positive-definite matrix and implementing Cholesky decomposition is easier.
Moreover, Cholesky only takes O(n3), which is faster than SVD(O(mn2)) when m > n.

3.4 Point-to-plane optimization
Point-to-point optimization generally converges much slower since it does not account for the

motion along the surface. Therefore, a second optimization strategy of optimizing the distance
between each source point to the tangential plane of the corresponding target point should be
evaluated. The corresponding tangential surface of a vertex pi is defined by the correspondence qi
and the normal ni. We then need to solve the equation E(R, T ) = Σn i=1 |(|Rpi+T −qi|)|2 instead. Similar to
point-to-point optimization, we need to solve an equation Ax = b in linear constraint, and the
general theory of converting the rotation matrix and translation matrix is the same. After the linear
approximation, we should obtain matrix A:

(8)

And the corresponding vector b is shown in Eq.9:

(9)

We still use Cholesky decomposition to solve the equation since A is still a positive-definite
matrix.

Table 1: Average running time analysis
Num of

correspondence
point-to-point point-to-plane traditional ICP

656 1.039 1.025 1.267

Table 2: Average steps to converge between scans
Steps for point-to-point Steps for point-to-plane

23 9
a bunny are shown in Figure 2 and Figure 3. The front view and the back view come together

wonderfully.

Figure 2: front view Figure 3: back view
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3.5 running time

The point-to-point and point-to-plane methods outperform the original ICP al- gorithm, as shown
in Table 1. Even though the difference between our method and traditional ICP is only about 0.25
seconds, this slight difference can be explained by the fact that we only have a few data points.
Only 635 corre- spondences are present, according to the table. However, it already represents a
significant improvement when expressed in percentage. The point-to-plane method also
outperforms the point-to-point method since it takes less average running time in each step.
Additionally, according to Table 2, we verified the hypothesis that point-to-surface registration
takes fewer steps to converge than other types of registration during the experiment, mainly when
the initial posi- tion of the new scans is far from the present scan.

4. Conclusion
In conclusion, this article successfully changes the nonlinear classical trigono- metric calculation

into a linear matrix calculation. We proposed two differ- ent methods: point-to-point transformation
and point-to-plane transformation.

The results show that point-to-plane transformation converges substantially faster than
point-to-point transformation and takes less time to execute each step on average. The shorter
running time makes point-to-plane transformation an appealing alternative for situations where
speed and efficiency are critical. However, due to hardware and dataset limitations, we only
conduct tests on data scans of roughly 70,000 data points. Although our data is insufficient, a
distinct difference in results between our approach and the classic ICP algo- rithm is convincing
enough to demonstrate that our approach is faster since the difference will become more apparent as
the number of data points increases. Furthermore, because our method assumes that the
corresponding points of the two data scans have a modest angle difference, we might investigate
how to retain linearity even with huge-angle difference data scans in the future.
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