
12

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023

Edge-side task scheduling: Auction mechanism and genetic
algorithm based methods

Peng Ren 1, a, Ruiyou Zhang 1, b, Zhiyou Li 1, *
1SCollege of Information Science and Engineering, Northeastern University , Shenyang, China.

a 2000829@stu.neu.edu.cn, b zhangruiyou@ise.neu.edu.cn, c 2110354@stu.neu.edu.cn

Abstract. Edge computing is an emerging computing architecture. The scheduling and optimization
of the tasks on the edge side of the smart factory can effectively reduce the processing delay and
improve the utilization efficiency of servers. This study focuses on the problem of edge-side task
scheduling with the goal of minimizing the maximum completion time of the tasks. A first-price
sealed-bid auction based algorithm and a genetic algorithm with elite retention strategy are
designed to solve the problem. The experimental results indicate that the auction-based scheduling
algorithm has better real-time performances compared to the genetic algorithm.

Keywords: edge computing; task scheduling; optimization; auction mechanism; genetic algorithm;
smart factory.

1. Introduction
Edge computing is an emerging computing architecture proposed on the basis of cloud

computing [1]. With the rapid development of Internet of Things and artificial intelligence
technologies, the terminal devices distributed in the smart factory expect services with lower
latencies and lower energy consumptions. Edge computing can meet these requirements by moving
the computation and storage capacity of the computing platform to the edge-side of the factory [2,
3].

The scheduling of the edge computing tasks among the edge servers faces great challenges.
Firstly, the servers are often heterogeneous and multiple types of resources constrain the allocation
of the tasks, which make the problem complicated. Secondly, the scheduling of the tasks raises
higher requirements for the real-time performance of the algorithm.

This work makes the following contributions to the field. Firstly, the edge-side task scheduling
problem is introduced minimizing the maximum completion time of the tasks. Secondly, an
auction-based algorithm is proposed to solve the problem and a genetic algorithm is also designed
for comparison. Finally, all the solving methods are validated and evaluated based on several
randomly generated instances with some concluding remarks proposed.

The rest of the paper is organized as follows. Section Ⅱ discusses the related literature. The
edge-side task scheduling problem is described in Section Ⅲ. The auction-based scheduling
algorithm and the genetic algorithm are designed in Section Ⅳ and Section Ⅴ, respectively. In
Section Ⅵ, validations and evaluations of the solving methods are performed. Finally, Section Ⅶ
summarizes the whole paper and proposes future directions.

2. Literature Review
In recent years, many researchers studied the task scheduling problem in edge computing. For

example, reference [4] divided the task scheduling problem of edge computing into three categories,
including the independent task offloading, the resource-constrained task offloading, and the
multitasking offloading. Reference [5] considered the average latency of the tasks and the average
power consumption of the devices, and proposed an approach based on the Markov decision
process to minimize the power-constrained delay. Reference [6] developed an innovative
framework based on the time division multiple access protocol to minimize the total energy
consumption of the servers. Reference [7] established a distributed game model to optimize the



13

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023
energy consumption of servers and the total completion time of tasks. Reference [8] established a
mixed-integer linear programming model to maximize the utilization of servers under deadlines of
tasks. Reference [9] developed a deep reinforcement learning based method to investigate the
offloading of the tasks.

Some scholars adopted the auction-based method to the task scheduling problem. For instance,
reference [10] considered the task processing latency and power consumption constraints of mobile
devices. With the goal of maximizing the profit of edge servers, they established a mathematical
model based on the auction mechanism to offload the tasks. Differently from this article, we
investigate the task scheduling problem in the edge-side of the smart factory minimizing the
maximum completion time of the tasks.

In summary, few studies used the auction mechanism based method to solve the edge-side task
scheduling problem. Differently from the existing articles, this paper presents a scheduling
algorithm based on the first-price sealed-bid auction and designs a genetic algorithm for
comparison.

3. Edge-Side Task Scheduling Problem
An intelligent factory deploys an edge computing network with several edge servers for its

production lines. The data collected on the industrial site is packaged as edge computing tasks. The
devices in industrial field, managed by a dispatch center, can transmit the tasks to the edge servers
for processing. Different tasks constitute the set N . The amount of data to be transmitted and the
computational workload for task iN are Di(≥ 0) and Ci(≥ 0), respectively. The memory required
by task i is Ri(≥ 0). The set of software and hardware resources required by task i is Hi.

The available edge servers constitute the set M . The memory capacity and processing speed of
server jM are Qj(≥ 0) and fj(≥ 0) , respectively. The set of software and hardware resources
possessed by server j is Sj . Each server can communicate with the devices in the industrial field
directly. The data transfer speed between any field device and server j is Bj(≥ 0). It is assumed that
each server can only process one task at the same time. For the tasks assigned to the same server,
the dispatch center will inform the corresponding field devices to transmit them in sequence and a
new task is transmitted once the execution of the previous task is completed except for the first one.

The task scheduling problem dispatches the tasks to the edge servers with the goal of minimizing
the maximum completion time of the tasks. The allocation of the tasks is constrained by the
available resources of the servers. Server j can process task i if and only if Ri ≤ Qj and Hi ⊆ Sj
both hold.

4. Auction-Based Scheduling Algorithm
The auction-based scheduling algorithm regards the tasks as commodities and regards the servers

as bidders. The tasks are auctioned in multiple rounds. The number of tasks able to be auctioned in
any round is w(≥ 0). Each server can get at most one task in a round of the auction. For each round
of the algorithm, all the servers bid for all the tasks able to be auctioned and these tasks are
successively distributed to the servers according to the ascending order of their computational
workload. Each task is assigned to the server with the highest valid bid for it.

The tasks assigned to the same server are transmitted in the order of their successful transaction.
If server j can process task i, the bid of server j for task i is inversely proportional to the completion
time of task i on server j, which is the summation of the data transmission time of task i to server j,
the execution time of task i on server j and the cumulative queue time on server j. Otherwise, the bid
of server j for task i is equal to zero.

Given M as the set of the available edge servers and N as the set of all the assignable tasks, the
process of the algorithm is described as follows.



14

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023
Step 1. Let qj be the cumulative queue time on server j. Initialize qj= 0 for any jM and ϵ = 1.
Step 2. Start round ϵ of the auction. Let gϵ= 0 and Zϵ= ∅.
Step 3. Add the task with the minimum computational workload in N \ Zϵ to Zϵ . If

Zϵ =min {w, N }, go to Step 4; otherwise, return to Step 3.
Step 4. Let pij be the bid of server j for task i. Calculate pij of any server jM for any task iZϵ

according to the following bidding rule.

pij=
Di
Bj
+
Ci
fj
+ qj

-1

, if Ri ≤ Qj and Hi ⊆ Sj,

0, otherwise,
Step 5. Let k be the task with the minimum computational workload in Zϵ . Let m be the server

with the highest bid for task k in M . If pkm>0 , assign task k to server m , and let gϵ = gϵ + 1 ,
qm= (pkm)-1 , N = N \{k} and pim = 0 for any iZϵ ; otherwise, task k cannot be assigned to any
server in round ϵ of the auction.

Step 6. Let Zϵ = Zϵ\{k}. If Zϵ is empty or gϵ= M , terminate round ϵ of the auction and go to
Step 7; otherwise, return to Step 5.

Step 7. If N is not empty, let ϵ = ϵ + 1 and return to Step 2; otherwise, output the results and
terminate the algorithm.

5. Genetic Algorithm
Genetic algorithm is a kind of metaheuristic algorithm inspired by the theories of biological

evolution. It selects new populations based on the excellent chromosomes in the parents and
expands the searching space by changing the gene sequences of the chromosomes using crossover
and mutation operators.

5.1 Encoding and decoding
The designed genetic algorithm uses the integer coding scheme, the length of which is the

number of the tasks. Each position in the scheme represents a task. The element in each position
represents the server processing the corresponding task. For example, an instance of the edge-side
task scheduling problem with five tasks and four servers can be encoded as

X = (1,2,1,3,4)，
which means that Task 1 and Task 3 are assigned to Server 1, Task 2 is assigned to Server 2,

Task 4 is assigned to Server 3, and Task 5 is assigned to Server 4.
The fitness of a chromosome is the maximum completion time of the tasks, which is equal to the

maximum running time of the servers. Given an allocating scheme of the tasks, the running time of
each server is the summation of the execution time and data transmission time for all the tasks
assigned to that server.

5.2 Initial population
The initial population is composed of a greedy solution and several randomly generated

chromosomes. In the greedy solution, the tasks assigned to the same server are assumed to be
transmitted according to the ascending order of their computational workload. Given N as the set of
all the assignable tasks, the procedure of the generation of the greedy solution is as follows.

Step 1. Allocate the task with the minimum computational workload in N to the available server
with the earliest completion time. Update set N.

Step 2. If N is empty, output the solution and terminate the greedy algorithm; otherwise, return to
Step 1.

In the remaining chromosomes, each task is assigned to any available server.



15

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023
5.3 Selection, crossover and mutation

The selection operator of the genetic algorithm adopts the roulette wheel mechanism with the
elite retention strategy. The crossover operator uses the single-point crossover method. The
mutation operator is to randomly move a task on the server with the longest running time to any
other available server. The genetic algorithm is terminated if the maximum iteration is reached.

6. Experiments and Analyses
All experiments were carried out on a personal computer with AMD R7-5800H, octa-core CPU

(3.20 GHz), 16.0G RAM, and a 64-bit Windows 11 operating system. The Java language in IntelliJ
IDEA 2021.3.2 was used to code the auction-based scheduling algorithm and the genetic algorithm.

6.1 Setting of experiments
There are multiple distributed servers and multiple terminal devices generating tasks on the edge

side of the smart factory. Six small-scaled instances named Instances S1-S6 and six large-scaled
instances named Instances L1-L6 were generated randomly. The numbers of edge servers in small-
and large-scaled instances were set as five and ten, respectively. The numbers of tasks for small-
and large-scaled instances were set to ten and one hundred, respectively.

The computational workload for each task was randomly generated between 5-25 million
instructions (MI). The memory capacity required by each task was randomly generated between
50MB-150MB. The amount of data needed to be transmitted for each task was randomly generated
between 5kB-10kB. The processing of the tasks requires software resources such as MATLAB and
SPSS, as well as hardware resources such as GPU. The hardware and software resources are
numbered sequentially. The set of hardware and software resources required by each task was
randomly generated as a subset of {1, 2, 3, 4}.

The processing speed of each server was randomly generated between 100MIPS-350MIPS. The
memory capacity of each server was randomly selected from 128MB, 256MB, 512MB and
1024MB. The data transfer speed between the terminal devices and each edge server was randomly
selected from 128kB/s, 256kB/s, and 512kB/s. The set of hardware and software resources
possessed by each server was randomly generated as a subset of {1, 2, 3, 4}.

w in the auction-based scheduling algorithm were set as five for small-scaled instances and ten
for large-scaled instances. The crossover rate and mutation rate of the genetic algorithm were set to
0.8 and 0.4, respectively. The population size and maximum iteration of the genetic algorithm were
set to 200 and 2000, respectively.

6.2 Experimental analyses
Table Ⅰ displays the computational results of the small-scaled instances. According to Table I,

there are no differences between the objectives of the solutions provided by the two algorithms for
five (i.e., Instances S2-S6) out of the six small-scaled instances. For Instance S1, the auction-based
scheduling algorithm got a worse solution compared to the genetic algorithm. However, the running
time of the auction-based scheduling algorithm was greatly reduced (i.e., less than 1ms).

Table II shows the computational results of the large-scaled instances. The auction-based
scheduling algorithm provided worse solutions for five (i.e., Instances L1-L3 and L5-L6) out of the
six large-scaled instances, compared to the genetic algorithm. However, the auction-based
scheduling algorithm has great advantages considering the running time (i.e., less than 1ms).
Moreover, the objectives of the large-scaled instances were increased compared to the small-scaled
instances. This was due to the raise of the numbers of tasks.

Instance S1 is further used to illustrate the properties of the task scheduling results provided by
the auction-based scheduling algorithm. The information about Instance S1 is shown in Table III
and Table IV. The solution of Instance S1 provided by the auction-based algorithm is shown in
Table V. It can be seen that Server 2 and Server 4 with sufficient resources and higher processing



16

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023
speed obtained most tasks, which can reduce the processing time of these tasks. Moreover, Server 3
did not obtain any task. The reason behind this phenomenon was that the hardware and software
resources of Server 3 were limited and the processing speed of Server 3 was low. Although Server 3
had the ability to process Task 3 and Task 10 according to Table III and Table IV, these tasks were
finally assigned to Server 5 with higher processing speed and higher data transmission speed. Under
the premise of satisfying the resource constraints, a shorter completion time of the tasks can be
obtained by reducing their transmission time and processing time.

Table1 Results of Small-Scaled Instances.
Instance Auction-based scheduling algorithm Genetic algorithm

OBJ. (s) CPU time OBJ. (s) CPU time (ms)
S1 0.305

<1ms

0.285 235
S2 0.930 0.930 220
S3 0.853 0.853 220
S4 0.616 0.616 204
S5 0.574 0.574 221
S6 0.667 0.667 220

Table2 Results of Large-Scaled Instances.

Instance Auction-based scheduling algorithm Genetic algorithm
OBJ. (s) CPU time OBJ. (s) CPU time (ms)

L1 2.330

<1ms

1.351 815
L2 1.758 1.368 832
L3 2.596 2.257 816
L4 3.082 3.082 812
L5 3.471 3.021 816
L6 1.702 1.391 816

Table3 Properties of Servers in Instance S1.

Server Processing speed
(MIPS)

Data transfer
speed (kB/s)

Memory capacity
(MB)

Software and
hardware resources

1 171 256 256 1, 2, 3
2 345 128 128 1, 2, 3, 4
3 123 128 1024 3, 4
4 213 512 512 1, 2, 3, 4
5 252 256 128 3

Table4 Properties of Tasks in Instance S1.

Task
Computational
workload (MI)

Amount of data
(kB)

Required memory
capacity (MB)

Required software
and hardware
resources

1 8 7 85 1, 2, 3, 4
2 18 8 74 1, 2, 3, 4
3 21 6 63 3
4 10 8 55 1, 2, 4
5 9 9 79 1
6 7 6 68 1, 2, 3, 4
7 16 5 141 2, 4
8 12 9 52 1, 2, 3, 4
9 22 5 97 1, 2, 3, 4
10 21 5 95 3



17

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023

Table5 Results of Task Scheduling in Instance S1.
Server Assigned task
1 5
2 1, 2, 8
3 None
4 4, 6, 7, 9
5 3, 10

7. Conclusions and Future Directions
This paper studies the edge-side task scheduling problem with heterogeneous edge servers in the

smart factory. The goal is to minimize the maximum completion time of the tasks. An
auction-based scheduling algorithm and a genetic algorithm are designed to solve the problem. The
experimental results show that the auction-based scheduling algorithm has better real-time
performances than the genetic algorithm although the solution provided by the auction-based
algorithm may be worse.

At present, there are still some deficiencies in this paper. For example, the load balance degree of
servers significantly impacts the efficiency of the edge computing network. The load balance degree
for servers and the maximum completion time of tasks can be optimized simultaneously and some
multi-objective optimization methods can be used to solve this problem.

Acknowledgment
This work was partially supported by the National Key R&D Program of China

(2019YFB1705003).

References
[1] H. H. Pang and K-L. Tan, “Authenticating query results in edge computing,” Proc. 20th International

Conference on Data Engineering (ICDE 04), IEEE press, 2004, pp. 560–571, doi: 10.1109/ICDE.2004.
1320027.

[2] F. Bonomi, R. Milito, J. Zhu and S. Addepalli, “Fog computing and its role in the Internet of Things,”
Proc. 1st Edition of the MCC Workshop on Mobile Cloud Computing (MCC 12), ACM press, 2012, pp.
13-15, doi: 10.1145/2342509.2342513.

[3] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: Towards a comprehensive
definition of fog computing,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 5, Oct.
2014, pp. 27-32, doi: 10.1145/2677046.2677052.

[4] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge computing: Vision and challenges,” IEEE Internet of
Things Journal, vol. 3, no. 5, Oct. 2016, pp. 637-646, doi: 10.1109/JIOT.2016.2579198.

[5] J. Liu, Y. Mao, J. Zhang and K. B. Letaief, “Delay-optimal computation task scheduling for
mobile-edge computing systems,” Proc. IEEE International Symp. Information Theory (ISIT 16), IEEE
press, 2016, pp. 1451-1455, doi: 10.1109/ISIT.2016.7541539.

[6] F. Wang, J. Xu, X. Wang and S. Cui, “Joint offloading and computing optimization in wireless powered
mobile-edge computing systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 3, Mar.
2018, pp. 1784-1797, doi: 10.1109/TWC.2017.2785305.

[7] J. Zhang, W. Xia, F. Yan and L. Shen, “Joint computation offloading and resource allocation
optimization in heterogeneous networks with mobile edge computing,” IEEE Access, vol. 6, 2018, pp.
19324-19337, doi: 10.1109/ACCESS.2018.2819690.

[8] O. Skarlat, M. Nardelli, S. Schulte and S. Dustdar, “Towards QoS-aware fog service placement,” Proc.
IEEE 1st International Conference on Fog and Edge Computing (ICFEC 17), IEEE press, 2017, pp.
89-96, doi: 10.1109/ICFEC.2017.12.



18

Advances in Engineering Technology Research ICBDEIMS 2023
ISSN:2790-1688 DOI: 10.56028/aetr.4.1.12.2023
[9] Y. Zhu, Y. Hu, T. Yang, T. Yang, J. Vogt, et al., “Reliability-optimal offloading in low-latency edge

computing networks: Analytical and reinforcement learning based designs,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 6, Jun. 2021, pp. 6058-6072, doi: 10.1109/TVT.2021.3073791.

[10] F. Mashhadi, S. A. S. Monroy, A. Bozorgchenani and D. Tarchi, “Optimal auction for delay and energy
constrained task offloading in mobile edge computing,” Computer Networks, vol. 183, Art. no. 107527,
Dec. 2020, pp. 1-10, doi: 10.1016/j.comnet.2020.107527.


	1.Introduction 
	2.Literature Review
	3.Edge-Side Task Scheduling Problem
	4.Auction-Based Scheduling Algorithm
	5.Genetic Algorithm
	5.1Encoding and decoding
	5.2Initial population
	5.3Selection, crossover and mutation

	6.Experiments and Analyses
	6.1Setting of experiments
	6.2Experimental analyses

	7.Conclusions and Future Directions
	Acknowledgment
	References

