
768

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.768

An improved model to simulate the effective material properties
of functionally graded porous plates

Xiaolin Huang1,a, Xiqi Hao1, Yanning Zhang1, Liangjie Li1
1School of Architecture and Transportation Engineering, Guilin University of Electronic Technology,

Guilin, China
axlhuang@guet.edu.cn

Abstract. This paper develops an improved model to estimate the effective material properties of
functionally graded porous plates with evenly and unevenly distributed pores. Based on the
higher-order shear deformation plate theory and extended von Kármán-type equations, dynamic
equilibrium equations of the plate were built with the effect of the viscoelastic foundation. By using a
two-step perturbation technique, the nonlinear frequency and dynamic response were obtain. The
effects of the pore volume fraction, porosity distributions, and ceramic mass fraction were
investigated.
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1. Introduction
Due to the imperfect technique of fabricating functionally graded materials (FGMs), internal

pores have been detected in the materials[1]. Furthermore, the pores in the middle are more than in
the other areas[2]. This was because a secondary material was difficultly infiltrated into the middle
area. In contrast, it was easily infiltrated into the upper and lower areas. To study the effect of
internal pores on dynamics characteristics, the free and forced vibrations of FGM plates with
internal pores were investigated by Rezaei[3] and Wang[4, 5]. They found that the pores have
significant influences on the natural frequencies and transient responses. In fact, their results are not
accurate enough, because the pore volume fraction was supposed to be small and omitted in
calculating the total volume of the plates.

To eliminate the assumption, an improved model was presented to reckon the effective properties
of the materials in the present research. Two kinds of porosity distributions, even and uneven, were
considered. In the framework of Reddy’s plate theory[6] and extended von Kármán-type equations[7],
the dynamic equilibrium equations of a porous FGM on viscoelastic foundation were built and
solved by using the two-step perturbation technique[8]. The influences of the internal pores on the
nonlinear vibration and transient deflection responses were discussed.

2. Theoretic Formulations
Figure 1 shows a rectangular porous FGM plate. The plate is made of metal and ceramics and

accompanied by evenly distributed (ED) or unevenly distributed (UD) pores. The composite
materials change continuously from the bottom to the top in the thickness direction(z).
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(a) (b)
Figure 1. (a) FGM plate on viscoelastic medium (b) ED and UD pores

In the previous research, the pore volume fraction  was assumed to be small ( 1 ). Hence,

it was omitted in the total volume of the plate,i.e. 1mc VV , in which cV and mV denote the
volume fractions of the ceramic and fraction. Evidently, the assumption leads to inaccurate results.

To eliminate the assumption, we let 1mc  VV and 1mc WW , in which Wc and Wm

are the mass fractions of the ceramic and metal. Thus, cV can be calculated as follow:
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where c and m are the mass densities of the ceramic and metal.
Suppose the ceramic materials follow the power function distribution in the thickness direction.

The ceramic volume distribution
*
cV can be stated as:
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where N is the material volume index.
By using an improved rule of mixture, the effective material property P, such as Young’ s

modulus, mass density and Poisson ratio can be stated as:
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where the porosity distribution * is assumed to be :
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In the framework of Reddy’s plate theory[6] and the extended von Kármán-type equations[7, 8],
the dimensionless dynamic equilibrium equations of the plate can be stated by using the
displacements (W~ , x

~ , y
~ )and stress function F~ :
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in which the dots mean the derivative corresponding to time. The linear operators ()iL ,
nonlinear operators ()L , constants i and  , and dynamic load ),,( tyxq were given in
previous reported[9]. wK is the dimensionless Winkler foundation parameter, sK is the Pasternak
foundation parameter, and cK is the viscous foundation parameter.

The four edges of the plate are assumed to be simply supported. The boundary conditions are
given as
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3. Solution Procedure
For the sake of solving the governing equations (6)-(11), a two-step perturbation technique[7, 8]

is used in present research. The asymptotic solutions are assumed as
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In equation (12), the time parameter  (   ) is adopted to improve the perturbation
procedure. Substituting the equation (12) into the equations (6)-(11), then solving the perturbation
equations length by length, the displacements W~ , x

~ and y
~ can be obtained. The transverse

load is also derived as
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where ig (i=1-5)are load coefficients. If the free vibration is considered, the constant �� is 1,
otherwise �� is zero. Multiplying equation (13) by ( nymxsinsin ) and integrating over the plate area,
yield the nonlinear ordinary differential equation:
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in which
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By solving the equation (14), the nonlinear frequency and transient responses can be calculated.

4. Results and Discussion
The several non-dimensions parameters are used as follows:
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4.1 Comparison Study

The fundamental frequencies ̂ of an FGM plate, accompanied by ED and UD pores, are listed
in Table 1 . As shown in this Table, the discrepancies between reported[3] and the present results
were small.

Table 1 Fundamental frequencies  for a porous FGM plate.

� Method
N=0 N=0.1 N=0.5 N=1.0

ED UD ED UD ED UD ED UD

0.2
Ref.[3] 3.003 2.999 2.875 2.884 2.456 2.524 2.104 2.473
Present 2.948 2.981 2.823 2.868 2.412 2.509 2.076 2.233
Error(%) 1.87 0.60 1.84 0.55 1.79 0.59 1.33 0.97

4.2 Parametric Studies
The influences of various material and pore parameters are discussed. The thickness, length, and

width of the porous FGM plate are 0.1m, 1.0 m, and 1.0 m, respectively. The material parameters
are �c=3.223×1011 Pa, �c=2.370 g/cm3 and �c=0.24 for Si3N4, and �m=2.078×1011 Pa, �m=
8.166 g/cm3, and �m=0.3178 for SUS304.

Tables 2-3 list the dimensionless fundamental frequency ̂ with different values of ceramic
mass fraction cW , pore volume fractions � , and material index � . The two tables show that the
dimensional frequency rises as the ceramic mass fraction cW increases, whereas it is decreased
with the rising parameter � . The tables also show that the dimensional frequencies for ED pores
are different from those for UD pores. Moreover, The dimensional frequency is not always
decreased with the rise of pore parameter α, because the pores can weaken the effective stiffness
and mass of the plate simultaneously. If the effect of pores on the stiffness is more significant than
that of mass, the dimensionless frequency is decreased. Otherwise, it is increased.
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Table 2 Fundamental frequency ̂ for even porosity distribution.

�w �s �c �c α N
0.0 0.1 0.5 1.0

100 10 10 0.1 0.0 8.1930 8.1295 7.9826 7.9081

0.1 8.3021 8.2409 8.0994 8.0281

0.2 8.4494 8.3905 8.2547 8.1866

0.3 0.0 9.2080 9.0421 8.6219 8.3888

0.1 9.2818 9.1208 8.7142 8.4897

0.2 9.3915 9.2355 8.8434 8.6280

Table 3 Fundamental frequency ̂ for uneven porosity distribution.
�w �s �c �c α N

0.0 0.1 0.5 1.0
100 10 10 0.1 0.0 8.1930 8.1295 7.9826 7.9081

0.1 8.2740 8.2226 8.0788 8.0098

0.2 8.3644 8.3100 8.1850 8.1220

0.3 0.0 9.2080 9.0421 8.6219 8.3888

0.1 9.2262 9.0700 8.6764 8.4595

0.2 9.2487 9.1109 8.7378 8.5388
Fig.2 reveals the effect of the pore parameter  on the ratio of nonlinear to linear frequency. It

can be observed that the frequency ratio rises as the parameter  increases.

(a) ED pores (b) UD pores
Figure 2 Effect of pore volume fraction  on frequency ratio.



773

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.768

The influence of pore parameters  on transient deflections was shown in Fig.3. As expected,
the amplitude is raised as both the pore parameter � and material index � increase. The effect of
ED pores is more significant than that of UD pores.

(a) ED pores (b) UD pores
Figure 3 Effect of pore volume fraction  on transient deflection.

5. Concluding Remarks
In this paper, an improved model to reckon the material properties of porous FGM plates was

given. The procedure of analyzing the nonlinear vibration were presented and used to study the
effects of pores and visoelastic foundations. The numerical results showed that the natural
frequency and the ratio of nonlinear to linear frequency were decreased by increasing pore volume
fraction. Conversely, the amplitude of dynamic deflection was increased.
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