
390

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.390

Object-oriented Design based Comprehensive Experimental
Development of Document Object Model

Yanlong Wang 1, a, Jinhua Liu 2, b

1School of Media Engineering, Communication University of Zhejiang, Hangzhou 310018, China;
2 Experimental Center, Communication University of Zhejiang, Hangzhou 310018, China.

awangyl@cuz.edu.cn, b 392127199@qq.com

Abstract. JavaScript code using Document Object Model (DOM) can realize the dynamic control of
Web pages, which is the important content of the Web development technology course. The
application of DOM is very flexible and includes many knowledge points, so it is difficult for students
to master. In order to help students to understand each knowledge point and improve their
engineering ability to solve practical problems, a DOM comprehensive experiment project similar to
blind box is designed and implemented. This experimental project integrates knowledge points such
as DOM events, DOM operations, and communication between objects. Practice has proved that
running and debugging of the project can help students to understand and master relevant
knowledge points.

Keywords: document object model; web programming; class diagram; object communication.

1. Introduction
WEB front-end development involves three major technologies: Hypertext Markup Language

(HTML), Cascading Style Sheets (CSS) and JavaScript programming. HTML documents use tags
to define the structure and content of Web pages. CSS, which defines the presentation of documents
written in HTML, separate presentation from structure. JavaScript is a prototype-based,
single-threaded, dynamic language that adds interactivity and custom behaviors to our sites,
supporting object-oriented, event-driven programming model. Combining with document object
model(DOM) that defines a standard for accessing HTML documents, JavaScript can manipulate
the action of web pages. JavaScript process events by adding event handler on DOM object
corresponding to HTML element. Accessing and manipulating the content of web pages by DOM
object is the important content of the Web development technology course. The application of
DOM is very flexible and involves many knowledge points, so it is difficult for students to
master[1-4]. In order to enable students to effectively understand each knowledge point and improve
their engineering ability to solve practical problems with the knowledge they have learned, a DOM
comprehensive experiment project similar to blind box is designed and implemented. This
experimental project integrates knowledge points such as DOM events, DOM operations, this
pointer of function, and communication between objects. Running and debugging the project is
helpful for students to understand these knowledge points[4].

2. The document object model basics
The Document Object Model (DOM) is an application programming interface for HTML and

XML documents. It provides a structured map of HTML documents, as well as a set of methods to
interface with the elements contained therein. It is a complete object-oriented representation of
WEB pages, which can be used to find elements by their names or attributes, and then add, modify,
or delete elements and their content.

2.1 The node tree
DOM represents an HTML document as a tree structure with the corresponding objects of

HMTL elements as nodes, which is called a node tree. The browser builds its corresponding DOM

391

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.390
node tree while rendering the HTML document. Typically, each attribute of an HTML element has
a corresponding attribute in its corresponding DOM node object. Through the methods and
properties of the DOM node object, user can access any element in the page, and perform
operations such as element modification, deletion, and addition[5]. Consider the following HTML
page:

<html>
<head>

<title>Main</title>
</head>
<body>

Baidu
</body>
</html>
The DOM node tree corresponding to the above HTML document is shown in Figure 1.

Fig. 1 A node tree corresponding to HTML document
In Figure 1, the document node which is an instance of HTMLDocument, also called document

object, is the root node of the DOM node tree corresponding to the HTML document. The only
child of the document node is the <html> element, which is called the document element. Each
element within the page is referred to as a node in above figure. Nodes with black border are
element nodes. Node with red border is attribute node. Nodes with blue border is text nodes.

2.2 Creating and adding elements
New element can be created by using the createElement() method of document object. This

method accepts a single argument, which is the tag name of the element to create. To create a
 element and set its src attribute, the following code can be used:

const image = document.createElement('img');
image.src = 'book.jpg';
Variable image is a element object corresponding to element, since it is not part of the

document tree, it doesn’t affect the browser’s display. The DOM also allows developers to change
the document structure itself by adding and removing nodes. The following code adds the newly
created element to the document’s <body> element:

document.body.appendChild(img);
After the above code is executed, the element node is inserted into the DOM node tree,

the browser will render the image immediately, and the web page will display the image.

2.3 Event and event handler
DOM events are responses to user input and other actions, and JavaScript interacts with HTML

pages through events. DOM events involve three elements: event source (eg, button), event name
(eg, mouse click) and event handler (eg, custom function). Element objects (event source) that can
fire events have two methods to deal with the assignment and removal of event handlers:
addEventListener() and removeEventListener(). These methods accept three arguments: the event
name to handle, the event handler function, and a Boolean value indicating whether to call the event
handler during the capture phase (true) or during the bubble phase (false).

392

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.390

When an event is triggered in the DOM, all information related to the event is stored in an object
called event. Normally, the event object is the only parameter passed to the event handler. The
event handler function obtains various information related to the event from it[5].

2.3 Communication between objects
Generally, there are three ways to communicate between objects: 1) The bidirectional reference

between communication objects is used to realize object communication. From a software
engineering point of view, that's not good. Because this kind of including relation is sometimes
contrary to common sense. For example, it is normal for a car to have a motor, but it is incredible
that there is a car in the motor. 2) Fire custom events to implement object communication. The
object registers the event listener for the custom event. After the event that is listened is triggered,
the object can receive and handle it. 3) Use callback function to implement object communication.
The object that includes another object creates a callback function. The method of included object
calls that callback function, when object communication is needed.

3. Design of DOM Comprehensive Experiment Project
3.1 Function of DOM comprehensive experimental project

This comprehensive experimental project implements a simple function similar as blind box. The
user can set the number of blind boxes, and the program generates a specified number of blind
boxes and randomly puts gifts into each blind box. The user clicks on the selected blind box, and
the gift in the blind box and its value will be displayed.

3.2 Interface design for DOM comprehensive experimental project
According to the function of the comprehensive experimental project, the user interface of the

system should include: a text input box for inputting the number of blind boxes; a button to reload
the blind boxes; pictures representing the blind boxes and hint for operation. The interface is shown
in Figure 2.

Fig. 2 The system user interface

3.3 Class design for DOM comprehensive experimental project
The main purpose of the comprehensive experiment project is to help the students to

understand key knowledge points, so as to cultivate the students' ability to comprehensively use the
knowledge they have learned to solve engineering problems. In order to reduce the difficulty for
students to understand key knowledge points, the classes should be as few and simple as possible.
According to the functions of the comprehensive experimental project, two class, App and Present,
are designed. The class App is responsible for creating the user interface, and the class Present is
responsible for creating the blind box and handling the click event of the blind box. The class
diagram of the system that communication between instance of class App and class Present is
implemented by calling callback function is shown in Figure 3a. The class diagram of the system
that communication between instance of class App and class Present is implemented by firing event
is shown in Figure 3b[6,7].

393

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.390

(a)Object communication with callback function (b)Object communication with event
Fig. 3 The class diagram of the system

In figure 3(a), the _onPresentOpened method of class App is a callback function acting as a real
parameter, which is passed to constructor function of class Present and called after the blind box is
opened. In figure 3(b), the _onPresentOpened method of class App is a event handler, which is
called when the custom event named ‘opened’ is triggered. Statements in _onPresentOpened
method involve many knowledge points such as manipulating HTML elements with DOM, DOM
events and communication between objects. Statements in constructor method of class Present
involve knowledge points such as adding elements with DOM, DOM events and binding pointer
this for function. The _openPresent method of class Present is a event handler that is responsible for
displaying present, which is called when blind box is clicked and opened. The difference between
the method _openPresent in figure 3(a) and figure 3(b) is action that will be done after gift has been
displayed. The action of method _openPresent in figure 3(a) is to execute callback function that is
received by augment onOpenCallback. The action of method _openPresent in figure 3(b) is to
create ‘opened’ event and fire it. Codes in method _openPresent include knowledge points such as
manipulating HTML elements with DOM, DOM event and communication between objects. In
above methods, each key knowledge point appears repeatedly, which is facilitate to students
understand and master them.

3.4 Interface implementation and comparison of the two project running result
Codes in the HTML document (index. html) that implement the system user interface shown in

Figure 2 are as follows:
<body>

<div>
<label>The number of Presents:<input id="number" width="10" value="3"></label>
<button onclick="reload()">Reload Presents</button>

</div>
<h1 id="title">Click a present to open it:</h1>
<div id="presents"></div>
<script src="present-source.js" defer></script>
<script src="present.js" defer></script>
<script src="app.js" defer></script>
<script src="main.js" defer></script>

</body>
Running projects implemented based on class diagram figure 3 (a) and (b) by opening above

index.hmtl file in browser, Figure 4 (a) and (b) respectively shows web page rendered by browser.

394

Advances in Engineering Technology Research ISCTA 2022
ISSN:2790-1688 DOI: 10.56028/aetr.3.1.390

(a) result based on class diagram in figure 3 (a) (b) result based on class diagram in figure 3 (b)
Fig. 4 web pages rendered by browser

According to figure 4, the two web pages are the same except the display of console window of
browser, which shows that object communication is implemented with different method.

4. Summary
The document object model is one of the important contents of the WEB front-end development

course. It involves many knowledge points, and it is difficult for students to master it. In this paper,
a comprehensive experimental project that integrates multiple knowledge points is similar to blind
box is designed and implemented. The realization and debugging of this project can train students'
practical ability. Based on this project, students can effectively improve their engineering ability to
solve practical problems by adding the functions of the system.
Acknowledgments. The research presented in the paper is supported by the research grant No.
AB08190 of CUZ and No. 201902303021 of Industry-Univ. Cooperation Collaborative Education.

References
[1] Robert F, Dugan, Jr. A single semester web programming course model. Journal of Computing Sciences

in Colleges, 2013, 29(1):26-34.
[2] Wang Y D, Zahadat N. Teaching Web Development in the Web 2.0 Era. The 10th ACM Conference on

SIG- information Technology Education. Fairfax, USA: Association for Computing Machinery, 2009.
[3] Connolly R. Facing Backwards While Stumbling Forwards: The Future of Teaching Web Development.

The 50th ACM Technical Symposium on Computer Science Education. Minneapolis, USA:
Association for Computing Machinery, 2019.

[4] Kar S, Islam M M, Rahaman M. State-of-the-Art Reformation of Web Programming Course Curriculum
in Digital Bangladesh. International Journal of Advanced Computer Science and Applications, 2020,
11(3):193-201.

[5] Matt Frisbie. Professional JavaScript for Web Developers, 4th Edition. Indianapolis：John Wiley & Sons,
Inc., 2019.

[6] Zeaaraoui A, Bougroun Z, Belkasmi M G, et al. Object-oriented Analysis and Design Approach for the
Requirements Engineering. Journal of Electronic Systems, 2012, 2(4):147-153.

[7] Kulkarni R N, Prasad P Pani Rama.  Abstraction of UML Class Diagram from the Input Java Program.
International Journal of Advanced Networking and Applications, 2021, 12(4): 4644-4649.

	1.Introduction
	2.The document object model basics
	2.1The node tree
	2.2Creating and adding elements
	2.3Event and event handler
	2.3 Communication between objects

	3.Design of DOM Comprehensive Experiment Project
	3.1Function of DOM comprehensive experimental project
	3.2Interface design for DOM comprehensive experimenta
	3.3Class design for DOM comprehensive experimental pr
	3.4Interface implementation and comparison of the two

	4.Summary
	References

