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Abstract. Modern intelligent control theory has experienced multi-stage development from classical 
control to fuzzy control, neural networks, and model predictive control, which not only improves the 
flexibility and adaptability of control systems but also promotes interdisciplinary research. With the 
advancement of science and technology and social development, intelligent control theory will be 
further combined with machine learning, big data, and other fields in the future to promote industrial 
automation and technological innovation. This article reviews the development history of modern 
intelligent control theory, its main theories, and its applications in robot manufacturing, power 
electronics, and other fields. It also discusses the current challenges and future development trends 
in the field of intelligent control. 
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1. Introduction 

With the rapid development of science and technology, modern intelligent control theory has 
attracted widespread attention and research in the field of control systems. The rise of this trend stems 
from a deep understanding of the limitations of traditional controllers in complex, highly dynamic 
systems. In the past, control systems mainly relied on the classic PID control method. This traditional 
method has limitations in dealing with nonlinear and time-varying systems. In order to better solve 
these challenges, modern intelligent control theory came into being. From the fuzzy set theory of 
fuzzy control to the bionic learning of neural networks to the timing optimization method of model 
predictive control, intelligent control theory continues to evolve, providing more flexible and 
intelligent solutions to system control problems. [1] 

In this era of digitization and automation, intelligent control theory is not only at the forefront of 
scientific research but also an important tool to promote engineering practice. The rise of emerging 
technologies such as deep learning has injected new vitality into intelligent control theory. At the 
same time, modern intelligent control theory has been widely used in many fields, such as robot 
intelligent manufacturing, machinery manufacturing, and power electronics. [2] 

This article will deeply analyze the specific application cases of modern intelligent control theory 
in different fields, analyze the challenges and opportunities faced by modern intelligent control theory, 
look forward to the future development direction, and provide ideas for research in the field of 
intelligent control, which is of great significance. 

2. Development of Modern Intelligent Control Theory 

The evolution of modern intelligent control theory stems from a deep understanding of the 
limitations of traditional control methods, whose roots can be traced back to the middle of the last 
century. In the 1940s and 1950s, the univariate system control theory represented by the frequency 
method was gradually developed and successfully used in radar and fire control systems, which 
resulted in the formation of the "Classical Control Theory.". Traditional controllers showed some 
difficulties in dealing with the nonlinearity, uncertainty, and time-varying nature of complex systems, 
so intelligent control theory came into being. In the 1960s and 1970s, mathematicians dominated the 
development of control theory, forming the "modern control theory" represented by the state-space 
method [3]. In 1971, Chinese-American scientist Jingsun Fu put forward the idea of combining 
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artificial intelligence and automatic control, laying the foundation for the development of intelligent 
control theory. Subsequently, in 1977, American scholar G. N. Saridis further proposed the idea of 
combining artificial intelligence, cybernetics, and operations research, paving the way for the theory 
to enter a new era [4]. Since then, many intelligent control methods, such as self-tuning and parameter 
tuning PID, have been developed on the basis of the conceptual simulation of artificial intelligence, 
with the main theoretical support of "large system theory" and "intelligent control theory." Later on, 
the development of practical intelligent control algorithms is the main focus, especially neuron 
networks, which are the most prominent [5]. The research results in this period have promoted the 
continuous deepening of intelligent control theory. 

Entering the 21st century, the emergence of deep learning technology has become an important 
driving force in the field of intelligent control. With its excellent data processing and feature 
extraction capabilities, deep learning has demonstrated its unique advantages in the modeling and 
control of complex systems. Meanwhile, the introduction of emerging technologies such as 
reinforcement learning has further expanded the research field of intelligent control theory. Intelligent 
control theory has gradually evolved into an interdisciplinary and diversified field, providing a new 
paradigm for solving complex system control problems. 

Modern intelligent control has a high degree of flexibility, which can flexibly respond to 
complexity and uncertainty and realize automatic control; it has adaptivity, which can make 
autonomous decisions to solve multi-objective conflicts and show self-organizing and coordinating 
functions; it has theoretical intersectionality, which can be combined with other technologies to make 
the system design more diversified and the scope of application more extensive; and it has real-time, 
which makes the intelligent control system capable of responding to environmental disturbances and 
uncertain factors and realizing real-time response. [6] 

In the future, modern intelligent control theory will be more integrated with machine learning, 
computer vision, natural language processing, and other fields to form a more comprehensive and 
interdisciplinary research direction. At the same time, more attention is paid to real-time and the 
effectiveness of adapting to a variety of practical engineering application scenarios, especially in the 
fields of automatic driving and industrial automation. [7][8] 

3. Application of Modern Intelligent Control Theory 

3.1 Fuzzy Control 

As an intelligent control method, fuzzy control theory has been widely used in many industries 
and fields, showing its unique advantages and wide application potential. The origin of fuzzy control 
theory can be traced back to the 1960s. American professor Zadeh formally proposed fuzzy logic in 
1965 and gave the definition of fuzzy logic control and related theorems in 1973. In 1974, British 
professor Madani applied it to steam engine control for the first time, marking the birth of fuzzy 
control theory. Since then, fuzzy control theory has developed rapidly, especially the Takagi-Sugeno 
(T-S) model and single-case fuzzy system, which have greatly enriched the method and application 
scope of fuzzy control. 

The principle of fuzzy control is based on fuzzy set theory and fuzzy logic, and the control of 
complex systems is realized through four steps: fuzzification processing, establishment of fuzzy rules, 
fuzzy reasoning, and defuzzification. [9] 

The fuzzification and defuzzification are implemented by the control of the affiliation function. 
An affiliation function is used to determine the extent to which an input value belongs to a fuzzy set, 
commonly known as a triangular affiliation function, a trapezoidal affiliation function (Figure 1), and 
so on. The fuzzification process can transform the input values into fuzzy linguistic quantities through 
the affiliation function. The defuzzification then calculates the output value based on the shape and 
affiliation distribution of the fuzzy output set and scales it. 
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Figure 1 Triangular membership function and trapezoidal membership function 

 
Fuzzy rules, or "IF-THEN (premise-conclusion)" rules, are constructed on the basis of expert 

knowledge and experience, defining the relationship between input fuzzy sets and output fuzzy sets. 
Fuzzy reasoning uses fuzzy logic operations to process the premise part of the rule and then generate 
fuzzy output values based on the activation level of the rule and the conclusion part of the rule. 

The exact input variables are quantized and fed into the fuzzy controller, where the fuzzification 
process is converted into fuzzy sets, fuzzy reasoning is implemented by fuzzy logic operations, and 
finally the fuzzy reasoning results are converted into output quantities through the de-fuzzification 
process, which are output from the fuzzy controller [10]. The control block diagram of this process 
is shown in Figure 2. 

 
Figure 2 Block diagram of fuzzy control 

Generally, fuzzy systems are categorized into three types based on the IF-THEN rule: the 
Mamdani-type fuzzy system, the T-S fuzzy system, and the singleton fuzzy system [11]. 

Mamdani fuzzy system is a model-free control method based on experts’ experience, where the 
output fuzzy set is obtained by reasoning through fuzzy rules and the input fuzzy sets using fuzzy 
inference mechanisms, usually using the principle of maximum affiliation. 

The Takagi-Sugeno (T-S) fuzzy system, on the other hand, uses a linear model to represent the 
fuzzy rules, and the T-S model is capable of accurately approximating complex dynamical systems 
in the form of segmented linear or nonlinear systems. 

Singleton-type fuzzy systems are simpler and more intuitive; each rule has only one affiliation 
function, and the principle of maximum affiliation is used for fuzzy inference. 

As an important branch of modern intelligent control theory, fuzzy control realizes efficient control 
of complex systems through flexible fuzzy sets and fuzzy logic operations. Its wide application in 
aerospace, automobiles, electric power, and other fields has achieved remarkable results. 

The state of a jet airplane during landing is controlled by fuzzy tracking of a linear dynamic system. 
The dynamics of the aircraft are described by a set of differential equations that linearize the 
equilibrium flight conditions. Selection of appropriate state variables and treatment of the system of 
fuzzy differential equations through the concept of particle differentiability allow tracking of the input 
values and control of the longitudinal motion of the aircraft in the presence of perturbations [12]. 
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In recent years, the introduction of methods such as non-singular terminal sliding mode control 
has brought new design ideas for fuzzy control. For example, in robotic systems, uncertainty and 
external interference are compensated by an adaptive fuzzy system, which improves control accuracy 
and system robustness. Meanwhile, the fuzzy PID control system analyzes the qualitative properties 
within the fuzzy number space through generalized Hukuhara differentiability and fuzzy function 
integration, which enhances the flexibility and adaptability of the control system. The integration of 
these techniques not only improves the accuracy and robustness of the control system but also 
broadens the application of fuzzy control in different fields. [13][14] 

3.2 Neural Network Control 

Neural network control is an intelligent control method based on artificial neural networks, the 
concept of which is inspired by the network of neurons in the human brain. Neurons are the basic 
processing units of neural networks. 

The artificial neuron model is a simplification and abstraction of the biological neuron, which is 
generally a multiple-input, single-output unit, and its structural model is shown in Figure 3: 

 
Figure 3 Neuron Structure Model 

It receives a set of input signals ( 1 2, , , nx x x ), each of which  is weighted b by a weight 

( 1 2 2, , ,w w w ) to reflect the importance of different inputs. These weighted input signals are 

accumulated and a bias term is added to form the total input of the neuron, which is then processed 
by an activation function to produce the output of the neuron y . For example, the mathematical 
relationship between the input and output of a convolutional neural network can be expressed as 
follows [15]:  
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A neural network usually consists of multiple layers, including an input layer, a hidden layer, and 
an output layer. Each layer contains multiple neurons (or nodes), and neurons are connected by 
weights. Its structure is shown in Figure 4. 

The input layer receives input data and passes it directly to the next layer. Each neuron corresponds 
to one input data. The number of neurons and the number of layers in the hidden layer are determined 
by the complexity of the problem. The input of each neuron is the weighted sum of the output data of 
the previous layer, and then an activation function is used to process the information. The output layer 
also applies an activation function to process the input data. The number of neurons in this layer is 
equal to the number of output variables of the entire network. 
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Figure 4 Structure of Neural Network 

 
From the perspective of neural network structure, neural network systems are generally classified 

into the following categories [16][17]: 
(1) Feedforward Neural Network (FNN), which is the most basic type of neural network. 

Information propagates unidirectionally in the network without feedback. 
(2) Recurrent Neural Networks (RNNs), whose basic structural unit is the recurrent unit, which 

can feed back information from the output of the previous moment to the input of the current moment. 
(3) Self-Organizing Maps (SOMs), which is able to map high-dimensional input data into a usually 

two-dimensional, topology-preserving mapping space while maintaining the topological structure of 
the input data. 

When the number of network layers exceeds three, a deep learning neural network model is formed. 
As the number of network layers increases, more free elements can be used for function fitting, and 
its training process also requires a large amount of sample data. 

As an important part of modern intelligent control theory, neural network control has made 
remarkable achievements in various fields with its learning ability, real-time performance, and 
adaptability. For example, in terms of robot control, dynamic neural networks are used for real-time 
learning and control without relying on physical models, and control strategies can be dynamically 
adjusted to adapt to environmental changes. As shown in Figure 5, in this system, excitation noise is 
injected into the control channel to promote effective learning, ensuring that the estimation error can 
converge to zero even in the presence of excitation noise. [18] 

 
Figure 5 Control Block Diagram of a Neural Network Controlled Industrial Robot 

 
The neural network control system is real-time through parallel processing and distributed learning 

and is suitable for control tasks that require rapid response. In model predictive control (MPC), it uses 
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a mathematical model of the system to predict system behavior over a period of time in the future and 
optimize control signals to achieve control goals. Neural networks learn complex nonlinear 
relationships from data, allowing MPC to control systems that are difficult to accurately describe with 
traditional models. Make control decisions more quickly and accurately by updating the model in real 
time to reflect the latest system status and dynamics. [19] 

3.3 Genetic Algorithm 

A genetic algorithm is a type of evolutionary algorithm that was proposed by John Holland in the 
early 1970s and inspired by natural selection and genetic mechanisms to solve optimization problems 
by simulating the process of biological evolution through iterative searches with operations such as 
selection, crossover, and mutation [20]. The process is shown in Figure 6: 

 
Figure 6 Basic flow of genetic algorithm 

 
A randomly generated initial population is the basis for a genetic algorithm to begin the search 

process, where each individual is referred to as a chromosome and each element on the 
chromosome is referred to as a gene. In the genetic algorithm, the n-dimensional decision vector is 
represented by a X string  1,2, ,iX i n  consisting of n symbols . 

 

  1 2 1 2, , ,
T

n nX X X X X X X     (2) 

Each symbol iX represents a gene X and a chromosome. Genes are usually encoded in the form 

of binary strings, with 0 and 1 corresponding to alleles. 
Genetic algorithms search for optimal solutions by modeling the natural evolutionary process. The 

algorithm consists of three main genetic operators: selection, crossover and mutation. The selection 
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operator is responsible for selecting individuals from the current population according to some criteria 
so that they can generate offspring based on individual fitness. Common selection methods include 
roulette selection, tournament selection, and elite selection [21]. Genetic algorithms utilize a fitness 
function  f x  to evaluate the fitness of each individual, that is, the quality or merit of the solution, 

and individuals with high fitness have a higher probability of being selected to participate in the 
reproduction of the next generation. There are three common methods for designing fitness functions: 
direct evaluation, penalty, and multi-objective optimization [22]. 

Crossover, on the other hand, simulate biological reproduction, where two individuals generate 
offspring by exchanging genetic information to increase the diversity of solutions. Common crossover 
methods include single-point, multi-point, and uniform crossover [20]. For example, two new 
offspring are generated by dividing the genes of two parent individuals at a specific crossover point 
(c), and the expression is 

 
    1 1 21: 1:o p c p c end    (3) 

    2 2 11: 1:o p c p c end    (4) 

Among them, 1 2p p are the two individuals of the father, 1 2o o and are the offspring individuals 

obtained by the crossover operation of the two father individuals. The process is shown in Figure 7. 

 
Figure 7 Schematic Diagram of Crossover 

The mutation operation introduces new genetic mutations by randomly changing the values of 
certain genes, helping the algorithm avoid local optimality and expand the search space. The 
algorithm's termination condition is usually reaching the set number maxG  of iterations or finding a 

satisfactory solution. Through these processes, genetic algorithms can effectively find optimal 
solutions in complex search spaces. 

In the field of intelligent control, the applications of genetic algorithms include parameter 
optimization of system models, design and optimization of control strategies, fault diagnosis and 
fault-tolerant control, etc. Genetic algorithms can be used to automatically adjust the parameters of 
control system models such as PID controllers to optimize system performance; used to optimize 
control strategies to improve the system's adaptability and response efficiency to complex 
environments; and used in intelligent diagnostic systems to optimize diagnostic strategies to improve 
the accuracy and efficiency of fault detection [23]. 

Genetic algorithms are applied to optimize the membership function parameters of the fuzzy 
controller input variables. Each individual represents a set of membership function parameters, which 
are optimized through the evolutionary process of the genetic algorithm. This process can 
automatically optimize the membership function parameters, reduce human intervention, and enable 
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the servo control system to achieve the desired performance. Genetic algorithms are also used to 
improve PID controller parameters and dynamically select the best performance parameter 
combination to solve the optimization problem. This method not only saves computing time but also 
shows better performance than the existing state-of-the-art algorithms when solving a variety of test 
problems. [24] 

In mobile robot path planning, genetic algorithms are used to optimize the path of an autonomous 
mobile robot from a starting position to a target position while avoiding obstacles and optimizing 
specific criteria such as minimizing path length, maximizing safety, and shortening trajectory 
execution time [25]. For example, by improving the fitness function while considering the shortest 
path, the safety and efficiency of the path are also taken into account to more effectively find feasible 
paths in different environments. [26] 

 

3.4 Model Predictive Control 

Model Predictive Control (MPC) is a process control method widely used in industrial processes 
and system engineering. Its basic principle is to use the mathematical model of the system to predict 
system behavior in the future and optimize the control input at the current moment based on these 
predictions to achieve the desired control effect. The core steps of MPC include the establishment of 
the prediction model, the definition of the cost function, and the selection of the optimization 
algorithm [27]. 

A predictive model describes how a system responds to input signals to predict its future behavior. 
This model can be a deterministic model based on physical principles, an empirical model, or a data-
driven model. The model should describe the system's response to the control input accurately enough, 
usually expressed as a set of difference or differential equations, as follows: 

 
  1 , ,k k k kx f x u w   (5) 

Among them , kx  is the system state at the time step k , ku  is the control input , kw  is the 

possible system disturbance, and    f represents the system dynamics. 

The cost function defines what the control system is trying to achieve. The cost function typically 
reflects expectations of system performance, such as minimizing energy consumption, maintaining 
the system state on a desired trajectory, and reducing the variability of the control action. 

The cost function in model predictive control generally consists of two components: process cost 
and end cost. The process cost  ,L x u  calculates the contribution of each control action and system 

state to the total cost over the prediction horizon and is commonly used to evaluate the extent to which 
the system state deviates from the desired trajectory and the magnitude of the control action. The end-
state cost  x  reflects the deviation of the system state from the target state at the end of the 

prediction horizon, helps to ensure that the system state will eventually converge to the desired state, 
and is sometimes used to ensure system stability. Common forms of cost functions include quadratic 
cost functions and linear cost functions. The quadratic cost function is the most commonly used form 
of cost function, especially in linear systems and quadratic programming problems. In some 
applications, it may only be necessary to minimize the control action or the absolute value of the state 
deviation, in which case a linear cost function can be used. 

The optimization algorithm is responsible for solving for the minimum value of the cost function 
in each control cycle and determining the optimal control inputs. In the MPC framework, the 
optimization algorithm is responsible for solving an optimization problem to minimize the cost 
function while satisfying all constraints. The complexity of the optimization problem depends on the 
nature of the system model, the form of the cost function, and the type of constraints present. The 
commonly used optimization algorithms are linear programming, quadratic programming, and mixed 
integer programming. 
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The main advantages of MPC are its explicit treatment of constraints and the optimal control 
strategy achieved through future behavior prediction. It is particularly suitable for dealing with 
complex systems, multivariable systems, and systems characterized by nonlinearity or uncertainty. In 
robotics research, the combination of whole-body impulse control (WBC) and MPC can effectively 
realize the high-speed dynamic motion of the robot, and the overall control framework of this system 
is shown in Figure 8. This control system optimizes the motion state of the robot and realizes the 
complex dynamic gait by predicting the optimal ground reaction force contour in the future period 
and calculating the corresponding joint dynamics response [28]. 

 
Figure 8 Control System Framework for Quadruped Robots 

 
In the application of automatic landing of unmanned aerial vehicles (UAVs), the MPC approach 

performs UAV guidance by integrating vision-based target localization, optimal localization 
performed by the Kalman filter, and achieving an accurate and stable landing of the UAV on the 
mobile platform. During this process, MPC is responsible for predicting and optimizing the flight 
path and speed of the UAV to ensure that it can accurately dock to the mobile platform [29], 
demonstrating the advantages of MPC in real-time path planning and control. 

Another application of MPC in recent years is in building energy efficiency and comfort 
optimization to effectively reduce energy consumption while improving indoor thermal comfort. The 
system employs a dynamic artificial neural network with a nonlinear autoregressive exogenous 
structure (NARX) to adaptively predict the dynamic response of the building and adjust the heating, 
ventilation, and air conditioning (HVAC) system in real time within the MPC framework [30]. This 
not only demonstrates the potential of MPC in optimizing energy use and improving quality of life, 
but also highlights its broad applicability in interdisciplinary applications. 

4. Future Development Trends of Modern Intelligent Control Theory 

The development of modern intelligent control theory is in a period full of potentials and 
challenges, and its future trends are mainly influenced by the progress of new technologies, the 
deepening of interdisciplinary cooperation, and the expansion of application fields. First of all, new 
technologies such as the fusion of artificial intelligence and machine learning and the wide application 
of Internet of Things (IoT) technology will greatly improve the performance of intelligent control 
systems [31]. 

Meanwhile, interdisciplinary cooperation is also a key factor in promoting the development of 
intelligent control theory. For example, drawing on the self-organization and self-adaptation 
mechanisms in biology, as well as combining psychology to understand the human decision-making 
process in order to design more humane interaction interfaces, can provide new ideas and methods 
for the development of intelligent control systems. [32][33] 
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In terms of application prospects, the applications of intelligent control theory are rapidly 
expanding, covering a wide range of fields from self-driving cars to intelligent manufacturing to 
sustainable energy systems. These applications not only demonstrate the great potential of intelligent 
control theory in improving productivity, optimizing resource allocation, and promoting sustainable 
development, but also point in the direction of future research and development. 

Overall, with the continuous development of new technologies, the deepening of interdisciplinary 
cooperation, and the emergence of new application scenarios, the development of modern intelligent 
control theory will continue to move forward. 

5. Conclusion 

This paper accomplishes the following work for the development of modern intelligent control 
theory and its application in various fields: 

(1) The development of intelligent control theory is summarized, ranging from fuzzy control to 
neural network control to model predictive control, etc., and the theoretical foundations and 
technological advances at each stage are described in detail. 

(2) Examples of applications of intelligent control theory in different fields are analyzed, including 
aerospace, automobile manufacturing, and electric power systems, showing how intelligent control 
theory can solve practical engineering problems and improve system performance and safety. 

(3) The challenges and future directions of the intelligent control field are discussed, especially 
how to combine the latest technology to further promote the innovation and application of intelligent 
control theory. 

The continuous development of intelligent control theory not only promotes technological 
innovation but also provides more flexible and efficient solutions for dealing with complex systems. 
The research in this paper not only provides valuable reference materials for academic research but 
also provides theoretical support and practical guidance for technological upgrading and product 
innovation in industry. 

References 
[1] Kozák Š. State-of-the-art in control engineering[J]. Journal of Electrical Systems and Information 

Technology, 2014, 1(1): 1-9. 

[2] Lu Shijian. On the development and application of intelligent control theory[J].Computer CD-ROM 
Software and Applications,2014,17(16):37-38. 

[3] Huang Lei. Intelligent control technology and application[J]. Industry and Technology Forum, 2012, 
11(05): 81-82. 

[4] Bao Weimin, Qi Zhenqiang, Zhang Yu. Thoughts on the development of intelligent control technology[J]. 
Scientia Sinica: Information Sciences, 2020, 50(08): 1267-1272. 

[5] Xu Xiaoming, Sun Youxian, Xiong Gang . Current status of development of intelligent control theory and 
application[J]. Application of Electronic Technology, 1997(08):3-5. 

[6] Zishan Huang, Xuefeng Shao.Automatic Intelligent Control System Based on Intelligent Control 
Algorithm[J].Journal of Electrical and Computer Engineering,2022,2022(Pt.1):1.1-1.10. 

[7] Xue Ronghui. Review of Intelligent Control Theory and Application[J]. Modern Information Technology, 
2019, 3(22): 176-178.DOI:10.19850/j.cnki .2096-4706.2019.22.065. 

[8] Huang Lin, Yang Ying, Li Zhongkui. Several issues about intelligent control [J]. Chinese Science: 
Information Science, 2018, 48(08): 1112-1120 

[9] Wu H, et al. Handling forecasting problems based on fuzzy time series model and model error learning. 
Applied Soft Computing, 2019, 78: 109-118. DOI:10.1016/j.asoc .2019.02.021. 

[10] Zhu Manman , Du Yu , Zhang Yonghua , et al . Local path planning of intelligent vehicles based on fuzzy 
logic [J]. Journal of Beijing Union University (Natural Science Edition) , 2016, 030(004):29-32. 



 

713 

Advances in Engineering Technology Research CVMARS 2024
ISSN:2790-1688 Volume-11-(2024)

[11] NGUYEN AT, TANIGUCHI T, ECIOLAZA L, et al. Fuzzy Control Systems: Past, Present and 
Future[J/OL]. IEEE Computational Intelligence Magazine, 2019, 14(1): 56-68. 
DOI:10.1109/MCI.2018.2881644. 

[12] Abbasi SM M , Jalali A. Fuzzy tracking control of fuzzy linear dynamical systems[J]. ISA transactions, 
2020, 97: 102-115. 

[13] Alnufaie L. Nonsingular fast terminal sliding mode controller for a robotic system: a fuzzy approach[J]. 
Engineering, Technology & Applied Science Research, 2023, 13(5): 11667-11671. 

[14] Phu ND, Hung N N , Ahmadian A, et al. A new fuzzy PID control system based on fuzzy PID controller 
and fuzzy control process[J]. International Journal of Fuzzy Systems, 2020, 22(7): 2163-2187. 

[15] Zhou Feiyan, Jin Linpeng, Dong Jun. A review of convolutional neural network research[J]. Chinese 
Journal of Computers, 2017, 40(6): 1229-1251. 

[16] Qi Xuliang . LSTM neural network method for real-time prediction of dynamic response of mooring 
system[D]. Liaoning: Dalian University of Technology, 2020. 

[17] Dong Amei . Research on color fabric defect detection and classification algorithm based on convolutional 
neural network[D]. Shaanxi: Xi'an Polytechnic University, 2018. 

[18] Li S, Shao Z, Guan Y. A dynamic neural network approach for efficient control of manipulators[J]. IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49(5): 932-941. 

[19] Ren YM, Alhajeri MS, Luo J, et al. A tutorial review of neural network modeling approaches for model 
predictive control[J]. Computers & Chemical Engineering, 2022, 165: 107956. 

[20] Katoch S, Chauhan S S , Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia 
tools and applications, 2021, 80: 8091-8126. 

[21] Shukla A, Pandey HM, Mehrotra D. Comparative review of selection techniques in genetic 
algorithm[C]//2015 international conference on futuristic trends on computational analysis and 
knowledge management (ABLAZE). IEEE, 2015: 515-519. 

[22] Li Zhiyong, Huang Tao, Chen Shaomiao, et al. Review of constrained optimization evolutionary 
algorithms [J]. Journal of Software, 2017, 28(6): 1529-1546. 

[23] Chen Nan, Qu Mingfei . Intelligent diagnosis system for aircraft electrical faults based on genetic 
algorithm[J]. Internal Combustion Engines and Accessories, 2019, (14): 190-
191.DOI:10.19475/j.cnki.issn 1674-957x.2019.14. 089. 

[24] Torres-Salinas H, Rodríguez-Reséndiz J, Cruz-Miguel E E , et al. Fuzzy logic and genetic-based algorithm 
for a servo control system[J]. Micromachines, 2022, 13(4): 586. 

[25] Bakdi A, Hentout A, Boutami H, et al. Optimal path planning and execution for mobile robots using 
genetic algorithm and adaptive fuzzy-logic control[J]. Robotics and Autonomous Systems, 2017, 89: 95-
109. 

[26] Lamini C, Benhlima S, Elbekri A. Genetic algorithm based approach for autonomous mobile robot path 
planning[J]. Procedia Computer Science, 2018, 127: 180-189. 

[27] Mesbah A. Stochastic model predictive control: An overview and perspectives for future research[J]. 
IEEE Control Systems Magazine, 2016, 36(6): 30-44. 

[28] Kim D, Di Carlo J, Katz B, et al. Highly dynamic quadruped locomotion via whole-body impulse control 
and model predictive control[J]. arXiv preprint arXiv:1909.06586, 2019. 

[29] Feng Y, Zhang C, Baek S, et al. Autonomous landing of a UAV on a moving platform using model 
predictive control[J]. Drones, 2018, 2(4): 34. 

[30] Yang S, Wan M P, Chen W, et al. Model predictive control with adaptive machine-learning-based model 
for building energy efficiency and comfort optimization[J]. Applied Energy, 2020, 271: 115147. 

[31] Bzai J, Alam F, Dhafer A, et al. Machine learning-enabled internet of things (iot): Data, applications, and 
industry perspective[J]. Electronics, 2022, 11(17): 2676. 

[32] Zhou Xingshe, Wu Wenliang. Unmanned system swarm intelligence and its research progress[J]. 
Microelectronics and Computers, 2021, 38(12): 1-7. DOI: 10.19304/ j.issn 1000-7180.2021.1171. 

[33] Ren Fang. Optimization design of human-computer interaction system of conversational robot based on 
deep reinforcement learning[J]. Automation and Instrumentation, 2024(03): 184-
188.DOI:10.14016/j.cnki .1001-9227.2024.03.184. 


