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Abstract. Arrhythmia is a common phenomenon in cardiovascular diseases and its accurate 
diagnosis typically relies on a thorough analysis of electrocardiogram (ECG). Therefore, accurate 
identification and classification of ECG signals play a crucial role in the effective treatment of cardiac 
diseases. In this study, we propose a deep learning model based on Hilbert-Huang Transform (HHT) 
and one-dimensional convolutional neural network (1D-CNN), aiming to enhance the accuracy of 
ECG signal classification. Specifically, we first perform time-frequency analysis and feature 
extraction of the signal using the Hilbert-Huang Transform, after which we further extract features 
and classify the signal using 1D Convolutional Neural Network. The experimental results show that 
the model proposed in this paper performs well in classifying four types of ECG signals, with average 
classification accuracies of 97.73%, 99.16%, 99.50%, and 99.88%, respectively. This not only proves 
the effectiveness of our proposed method but also provides important technical support for the 
diagnosis and treatment of cardiovascular diseases, which has far-reaching clinical application value. 

Keywords: Electrocardiogram Classification; Hilbert-Huang Transform; Convolutional Neural 
Network. 

1. Introduction 

Atrial fibrillation (AF), a highly prevalent and persistent arrhythmia, is one of the most common 

cardiovascular diseases. Early AF detection can enhance the effectiveness of clinical treatment and 

help prevent serious complications [1]. Electrocardiogram (ECG), first introduced by Muirhead in 

1872, is a widely used non-invasive method that enables the analysis of ECG to diagnose clinical 

patients with AF and other types of arrhythmia [2]. Therefore, recognizing and classifying ECG 

signals is crucial for the treatment of cardiac diseases. It holds broad societal significance and high 

research value. 

To enhance the accuracy of ECG signal recognition and classification, various automatic 

recognition methods are emerging [3]. These methods can be categorized into two main groups: those 

based on traditional machine learning algorithms and those based on neural networks and deep 

learning. Rabee and Barhumi's team [4] successfully classified 14 different heartbeat signals using 

support vector machines combined with discrete wavelet transform techniques, achieving a high 

accuracy rate. Celin [5] conducted a comparative study of various machine learning classifiers and 

found that the plain Bayes classifier performed well in terms of accuracy. [6] Employed an XGBoost 

classifier and a multi-stage processing technique, which included steps such as data acquisition, noise 

filtering, and feature extraction, for 45 feature descriptors. This approach significantly enhanced the 

classification accuracy of ECG signals. Mohebbanaaz et al. [7] conducted an early disease analysis 

using ECG and developed two classifiers: an optimized decision tree and an adaptive enhancement 

optimized decision tree. These classifiers effectively handle uncertain data and meet the need for 

high-precision classification. 

In recent years, with the improvement of computational power, deep learning techniques have 

been widely used in ECG signal classification. Li Dan et al. [8] utilized a one-dimensional CNN to 

accurately classify five types of arrhythmias and achieved high accuracy on the MIT-BIH arrhythmia 

database. Mathur et al. [9] employed a CNN and a Feedforward Artificial Neural Network (FFANN) 

approach. Experiments demonstrated that the method performed well in terms of accuracy and 

efficiency. [10] utilized a deep Long Short-Term Memory (LSTM) network to address the ECG signal 
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classification issue. The ECG time series were converted into spectral images, and key features such 

as instantaneous frequency and spectral entropy were extracted to train the LSTM network. This 

approach significantly enhanced the performance of the deep learning-based classifier. A new multi-

task deep neural network was proposed by [11] to dynamically model the local and global information 

of ECG feature sequences. This model successfully performed ECG signal analysis on CPSC2018 

and PTB-XL datasets, achieving average F1 scores of 0.827 and 0.833. Amin's team [12] utilized a 

two-dimensional CNN model to classify ECG signals. This model not only demonstrated high 

performance in terms of average classification accuracy but also exhibited significant advantages in 

evaluation metrics such as sensitivity and specificity. 

Traditional machine learning algorithms have two main limitations: (1) They struggle to handle 

large-scale and diverse datasets, making it challenging to learn complex and high-dimensional 

features from vast amounts of data. This limitation hinders effective ground classification tasks. (2) 

For complex data such as ECG signals, traditional machine learning algorithms require extensive 

manual intervention for feature extraction and preprocessing. In contrast, deep learning models can 

automatically learn the features in the data, thus avoiding complex manual processing. In addition, 

deep learning is more efficient when dealing with large-scale datasets and is more likely to achieve 

better classification results. 

Therefore, this paper proposes an ECG signal classification method that combines HHT and a one-

dimensional CNN. The HHT is used to extract features in the frequency domain of the signal that is 

challenging to directly analyze with the model. Subsequently, the CNN leverages its robust learning 

capability for final signal classification. Our approach leverages the benefits of HHT in analyzing 

nonlinear and nonsmooth signals and the effectiveness of CNN in feature learning and pattern 

recognition. With this innovative combination, the accuracy and automation of ECG signal 

classification can be significantly improved. 

2. Method 

2.1 Hilbert-Huang Transform 

The Hilbert-Huang Transform (HHT) is a powerful tool for signal feature extraction, providing 

distinct advantages over methods such as spectral mapping and wavelet analysis when handling 

nonlinear and nonsmooth signals [13]. The core algorithm of HHT involves Empirical Mode 

Decomposition (EMD) and the Hilbert Transform. Initially, complex signals are decomposed into 

multiple Intrinsic Mode Functions (IMFs) by EMD. Subsequently, features such as instantaneous 

frequency and instantaneous energy are extracted using the Hilbert transform. This process helps in 

understanding and classifying complex ECG phenomena to enhance classification accuracy.  Next, 

I will introduce the principles of these two algorithms one by one. 

2.1.1 Empirical Mode Decomposition (EMD) 

EMD reveals the intrinsic properties of signals on different time scales by decomposing the dataset 

into a finite and typically small number of IMFs through adaptive time-frequency analysis. Among 

them, each IMF has a specific frequency and amplitude and possesses the following two explicit 

properties: 

Across the entire dataset, the number of extreme points and the number of zero crossings are either 

equal or differ by at most one. 

At any point, the average value of the envelope defined by the local maxima and the average value 

of the envelope defined by the local minima are zero. 

The steps of EMD decomposition are as follows: 

First, the local maxima and minima of the signal are identified. Applying the cubic spline fitting 

technique, the upper and lower envelopes of the signal are constructed, respectively. The average of 

these two envelopes is calculated to form a new curve 𝑚1 . The original signal 𝑥(𝑡)  is then 

combined with the new curve 𝑚1 to create a difference, i.e.: 
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ℎ1 =  𝑥(𝑡) − 𝑚1 

Check ℎ1 whether the IMF conditions are satisfied. If not, the filtering process needs to continue. 

At this point, consider the ℎ1 as a new original signal, repeat the previous steps iteratively until 

ℎ𝑘 satisfies the IMF condition, and the first IMF is written as 𝑐1. The first IMF is labeled as 

𝑐1 = ℎ𝑘 

Subtract from the signal 𝑐1 from the original signal to obtain the residual 𝑟1 = 𝑥(𝑡)−𝑐1 . Repeat 

the process with the residual 𝑟1 as the new original signal and repeat the above process, until the IMF 

cannot be extracted from the residuals, i.e.: 

𝑟2 = 𝑟1−𝑐2, ⋯ , 𝑟𝑛 = 𝑟𝑛−1−𝑐𝑛 

Ultimately, the original signal 𝑥(𝑡) can be accurately represented as a series of IMFs with the 

upper final residuals 𝑟𝑛 the sum of the final residuals on a series of IMFs: 

𝑥(𝑡) = ∑ 𝑐𝑖

𝑛

𝑖=1

+ 𝑟𝑛 

Through the aforementioned steps, the EMD method can effectively decompose complex, non-

smooth, and nonlinear signals into a series of IMFs reflecting the signal characteristics at various 

scales. This process enables a comprehensive analysis and understanding of the signals. 

2.1.2 Hilbert transform 

After EMD has successfully decomposed the signal into a series of IMFs, the Hilbert Transform 

can be performed on each IMF individually to further analyze the time-frequency characteristics of 

the signal, reveal the instantaneous frequency and amplitude of the signal, and gain insight into the 

nature of the signal. The process is as follows: 

For a given IMF time series 𝑐𝑖(𝑡), performs a Hilbert transform to obtain the corresponding 𝐻𝑖(𝑡) 

that follows the mathematical expression below: 

𝐻𝑖(𝑡) =
1

𝜋
∫

𝑐𝑖(𝑡′)

𝑡 − 𝑡′
𝑑𝑡′ 

This process generates a complex signal, called a resolved signal 𝑧𝑖(𝑡) which takes the original 

IMF 𝑐𝑖(𝑡) as the real part and its Hilbert transform result 𝐻𝑖(𝑡) as the imaginary part, in the specific 

form: 

𝑧𝑖(𝑡) = 𝑐𝑖(𝑡) + 𝑗𝐻𝑖(𝑡) = 𝑎(𝑡)𝑒𝑗𝜃(𝑡) 

Here, the 𝑎(𝑡) represents the amplitude of the resolved signal and the 𝜃(𝑡) represents the phase 

angle. The amplitude and phase can be calculated by the following equations respectively: 

𝑎(𝑡) = √𝑐𝑖
2(𝑡) + 𝐻𝑖

2(𝑡) 

𝜃(𝑡) = arcta n (
𝐻𝑖(𝑡)

𝑐𝑖(𝑡)
) 

𝑎(𝑡)  provides instantaneous information about the signal strength, while the 𝜃(𝑡)  the time 

derivative of the signal gives the instantaneous frequency 𝜔(𝑡) : 

𝜔(𝑡) =
𝑑𝜃(𝑡)

𝑑𝑡
 

After this, the resulting instantaneous frequency and amplitude can be combined to reconstruct the 

original signal and form a more comprehensive signal representation: 

𝑥(𝑡) = 𝑅𝑒 ∑ 𝑎𝑖(𝑡)𝑒𝑗∫ 𝜔𝑖(𝑡)𝑑𝑡

𝑛

𝑖=1

 

With the HHT algorithm, we can extract detailed information in the time-frequency domain from 

the original signal, which offers a powerful tool for analyzing and understanding ECG signals. With 

this approach, the dynamics of the signal on various time scales can be thoroughly explored, which 

is crucial for comprehending complex ECG signal systems and subsequent signal classification. 
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2.2 Convolution Neural Network 

Convolutional neural network (CNN) is an efficient feature extraction tool [14]. Unlike 2D CNNs, 

which are mainly applied to high-dimensional tensors such as images, 1D CNNs are more adept at 

handling sequential data. They are very suitable for feature extraction of ECG signals in this paper, 

thanks to their core building blocks: convolutional layers and pooling layers. The orderly organization 

of these layers not only ensures that the model can extract features end-to-end but also provides a 

solid foundation for model training and optimization. 

 
 

Figure 1 Structure of 1D-CNN 

2.2.1 Convolutional layers 

The convolutional layer in CNN achieves effective extraction of local features in the data by 

performing convolutional operations on local regions of the input data using multiple convolutional 

kernels. Specifically, the convolution operation can be described by the following equation:  

𝑋𝑗
𝑘 = 𝑓( ∑ 𝑤𝑖𝑗

𝑘 ∗ 𝑋𝑖
𝑘−1

𝑖∈𝑀𝑗

+ 𝑏𝑗
𝑘) 

𝑓(𝑧) = 𝑚𝑎𝑥(𝑧, 0) 

In the equation, 𝑋𝑗
𝑘 represents the output of the 𝑗th feature map in the 𝑘th layer. The function 𝑓 

signifies the application of a nonlinear activation function, with ReLU being the specific activation 

function used. 𝑀𝑗 denotes the range of the local sensory field being considered. 𝑤𝑖𝑗
𝑘  stands for the 

𝑖th weight corresponding to the 𝑗th convolution kernel in the 𝑘th layer, and 𝑏𝑗
𝑘 represents the bias 

value associated with the feature map. 

2.2.2 Pooling layer 

The pooling layer's role is to conduct dimensionality reduction on the feature maps extracted from 

the convolutional layer. This process reduces model complexity and enhances processing 

performance. In the pooling operation, the two most common methods are mean pooling and 

maximum pooling. These methods achieve dimensionality reduction of features by calculating the 

mean or maximum value within the pooling window. In our experiments, we chose the maximum 

pooling method. The process can be expressed by the following equation: 

𝑦𝑘𝑖𝑗 = 𝑚𝑎𝑥
(𝑝,𝑞)∈𝑅𝑖𝑗

𝑥𝑘𝑝𝑞 

Where 𝑦𝑘𝑖𝑗  denotes the maximum output value associated with the kth feature map in the 

rectangular region 𝑅𝑖𝑗 , 𝑥𝑘𝑝𝑞  denotes the element in 𝑅𝑖𝑗  located at (𝑝, 𝑞), and |𝑅𝑖𝑗| denotes the 

number of elements in 𝑅𝑖𝑗. 
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3. Experiment 

3.1 Experimental environment 

The experimental framework of this study was constructed on a computer platform equipped with 

an AMD Ryzen 7 5800H processor and an NVIDIA GeForce GTX 1650 graphics card. The data 

preprocessing and construction of the subsequent models were carried out using Python 3.11.2 

language and the Keras deep learning framework. In addition, the experiments related to the HHT 

algorithm in this study were conducted in the MATLAB 2023b environment. 

3.2 Dataset 

3.2.1 Introduction to the dataset 

The dataset used for the study comes from the AliCloud Tianchi Learning Tournament[15]. The 

ECG data records provided cover a series of heartbeat signal sequences. The dataset classifies the 

signals into four categories: 0, 1, 2, and 3. The aim of this study is to predict the categories of heartbeat 

signals based on the various signal sequences. 

After organizing the original dataset, two sets of data were selected for visualization, and the 

results are presented below: 

  
Original Signal A Original Signal B 

Figure 2 Original Signal 

It was noted that the waveforms obtained were similar to the waveform characteristics of a typical 

ECG. Given that ECG monitoring typically employs a sampling frequency of up to 200 samples per 

second, and that each data sample contains 205 data points, this is highly consistent with the 

characteristics of ECG sampling. On this basis, it is reasonable to assume that each data sample likely 

represents a one-second fragment of the ECG signal extracted from a specific lead. 

3.2.2 Data preprocessing 

First, upon examining the dataset, it was observed that the signal length  was 205. However, 

certain signal segments had zero values at their ends. For instance, the signal depicted in the figure 

above (left)  only contains 177 valid sampling points. This phenomenon may be due to the fact that 

the sampling process was interrupted prematurely before it lasted a full second, or that the electrode 

tabs were removed prematurely before the end of the sampling, thus causing data interference from 

non-heartbeat signals. Therefore, we converted the trailing zeros of these signals to NaN. 

Subsequently, we established a threshold to assess and discard/truncate the signals, thereby 

eliminating these non-representative data segments. Here we choose 128 as the threshold value. 

In addition, a significant imbalance was observed in the distribution of samples in the original 

dataset. This imbalance may cause the model to overfit to categories with larger sample sizes during 

the training process, thereby reducing the predictive performance for certain categories. To solve this 

problem, we scale the data features randomly by generating an array of random numbers that follow 

a specific normal distribution as  scaling factors and multiplying them with the original data features. 

This method can generate new samples with slight variations in the feature space while maintaining 
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the original data distribution. This process increases the diversity of data, providing a more balanced 

and comprehensive database for model training. The following figure shows the sample distribution 

of the dataset before and after equalization: 

 
Figure 3 Class Distribution Before and After Equalization 

After expanding the dataset, to reduce training costs, we randomly selected 10,000 signal samples 

from the expanded dataset as the base dataset for this experiment. Each signal sample was numbered, 

and all subsequent experiments and improvements were conducted based on this dataset. 

3.3 Evaluation metrics 

In this study, Accuracy, Precision, Recall and F1_Score are used as the core evaluation metrics to 

comprehensively assess the performance of the ECG signal classification model. These metrics 

comprehensively reflect the performance of the model in handling complex multi-classification tasks 

from various dimensions. They encompass both the overall accuracy of the model and the evaluation 

of the model's fine-grained discriminative ability. The definitions of each metric are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy is a fundamental measure of the overall classification accuracy of the model. It indicates 

the proportion of correctly classified samples by the model, offering an intuitive basis for evaluating 

the model's performance on the entire dataset. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision reflects the proportion of samples predicted to be in the positive category that are truly 

positive. High accuracy in ECG signal classification implies confidence in predicting abnormal 

rhythms and reduces the likelihood of misdiagnosis. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Recall measures the proportion of all true positive class samples that are correctly identified by 

the model. High recall ensures that critical heart rate abnormalities are not missed, which is valuable 

for patient care. 

𝐹1_𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
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The F1 score is the harmonized average of precision and recall, serving as a more comprehensive 

performance evaluation metric that balances the importance of precision and recall to offer a thorough 

assessment of model performance. 

In the above equation, true positive cases (TP) refer to the number of samples correctly identified 

as abnormal rhythms by the model; true negative cases (TN) refer to the number of samples correctly 

identified as normal rhythms; false positive cases (FP) represent those normal samples incorrectly 

determined to be abnormal rhythms; and false negative cases (FN) are those samples that are actually 

abnormal rhythms but are incorrectly determined to be normal by the model. 

3.4 Comparative experiments 

The experiments were initially conducted to classify the ECG signals by using the signal values 

directly as features. XGBoost, Random Forest, SVM, and 1DCNN were selected as the classification 

models. The core parameters of each model were chosen as indicated in the following table: 

Model Parameter Name Parameter Value 

XGBoost 

n_estimators 100 

learning_rate 0.1 

max_depth 6 

RandomForest 

n_estimators 100 

max_features 'sqrt' 

criterion 'entropy 

SVM 

C 1.0 

kernel 'rbf' 

gamma 'scale' 

1DCNN 

filters 256 

kernel_size 3 

epochs 150 

batch_size 256 

activation 'relu' 

For each group of models in the table, we utilized a five-fold cross-validation method to acquire 

the experimental results as follows: 

Model Accuracy Precision Recall F1_Socre 

XGBoost 95.15% 95.10% 95.10% 95.08% 

Random Forest 95.41% 95.37% 95.37% 95.35% 

SVM 93.75% 93.70% 93.67% 93.66% 

1DCNN 96.73% 96.71% 96.67% 96.67% 

It can be seen that 1DCNN shows a relative advantage in ECG signal classification tasks. 

Therefore, we use 1DCNN as our fundamental model in the following modules. 

3.5 HHT Experiment 

After obtaining the optimal 1DCNN model in the previous step, we utilize the HHT method to 

extract additional frequency domain features from the signal. First, the signal is decomposed using 

the EMD method, resulting in a series of IMFs can be obtained for each signal. For instance, 

considering signal 2023 from the experimental dataset, the figure below illustrates the original signal 

and the IMFs obtained through its EMD decomposition: 
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Original Signal IMFs 

Figure 4 EMD descomposition 

After EMD decomposition of the signals, the obtained IMFs are then processed using the Hilbert 

transform to derive the respective sequences of instantaneous frequency and instantaneous energy for 

each signal. 

Different instantaneous frequencies and instantaneous energies are selected as features, 

respectively, and combined for experiments. It is noted that features involving frequency (mean_nu) 

result in a significant reduction in accuracy and other indicators. Therefore, only instantaneous 

energies are used as features thereafter. The energy of the first IMF (first_E), the energy of the last 

IMF (last_E), and the mean value of the energy of all IMFs (mean_E) are used as the features, and 

the results are obtained as follows. 

Model Accuracy Precision Recall F1_Socre 

mean_nu 85.08% 84.85% 84.87% 84.80% 

mean_E 99.09% 99.09% 99.08% 99.08% 

first_E 99.02% 99.01% 99.01% 99.01% 

last_E 99.00% 98.99% 98.99% 98.99% 

From the table above, it can be seen that the classification is best characterized by the mean energy 

of all IMFs. 

3.6 Analysis of results 

Analyzing the "mean_E" feature set, the training set and test set loss function values change with 

the number of training iterations, as illustrated in the figure below: 

  
Accuracy Curve Loss Curve 

 

Figure 5 Accuracy and Loss Curve 

As the training progresses, the accuracy on the validation set increases and converges to around 

99% after approximately 50 iterations. At this stage, the network is capable of effectively learning 
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the features of different types of ECG signals. The classification confusion matrix for the test set is 

displayed below: 

 
Figure 6 Normalized Confusion Matrix 

From the figure, it can be clearly concluded that the classification accuracy of ECG signals in 

categories 1, 2, and 3 reaches 99.16%, 99.50%, and 99.88%, respectively. These values are close to 

100%, indicating that the model can categorize these three categories of ECG signals almost without 

error. The accuracy of category 0 is slightly lower, but still reaches 97.73%. 

In summary, it can be concluded that the HHT+1DCNN-based model proposed in this paper can 

effectively learn the features of various classes of ECG signals and performs well across all  

performance metrics for ECG signal classification. 

4. Conclusion 

In this study, we propose a deep learning model that combines the Hilbert-Huang transform (HHT) 

and a 1D convolutional neural network (1D-CNN) using ECG data provided by AliCloud Tianchi 

Learning Tournament as a dataset. This approach effectively enhances the accuracy of ECG signal 

classification. In the experimental process, we first compare the classification performance of four 

different classification models: XGBoost, Random Forest, SVM, and 1D-CNN, when using signal 

values as features directly. The results show that the 1D-CNN model outperforms the other models 

in all evaluation metrics (accuracy, precision, recall, and F1 value). Therefore, we have selected the 

1D-CNN as our benchmark model. Additionally, we process the ECG signals using HHT to extract 

more comprehensive frequency domain features. The experimental results show that all four 

evaluation metrics exceed 99% when the mean energy (mean_E) of all IMFs is used as the feature 

combination. The average accuracies of classifying the four types of ECG signals are 97.73%, 99.16%, 

99.50%, and 99.88%, respectively. This demonstrates the progress and effectiveness of our proposed 

method. However, there are still some shortcomings in this study. For instance, the model's 

generalization ability is not strong enough, and there is a lack of diversity in the combination of 

feature selection. Future studies can aim to explore more diverse datasets with varied data 

distributions and utilize a wider range of feature combinations for experiments to enhance the 

accuracy of ECG signal classification. This improvement can offer more robust technical support for 

the diagnosis and treatment of cardiovascular diseases. 
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