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Abstract. Vehicle detection plays a crucial role in automotive electronic systems and automated 
driving systems, involving the recognition of specific vehicle types on roads. Addressing the issues 
of low detection accuracy and slow recognition speed in existing vehicle detection methods, this 
paper proposes an enhanced vehicle detection model based on YOLO. To account for the varying 
scales of vehicles and their impact on the detection model, a normalization method is utilized to 
improve the calculation of prior anchor frame dimensions. Additionally, a multi-layer feature fusion 
strategy is implemented to enhance the network's feature extraction capabilities by eliminating 
redundant high-level convolutional layers. Experimental results on the validation dataset 
demonstrate that the proposed method achieves a mean average precision (mAP) of 90.69% and a 
mean frames per second (fps) of 19.1, showcasing its effectiveness. 
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1. Introduction 

The rapid advancement of self-driving car technology has spurred a competitive landscape among 

automakers and technology firms striving to develop and implement autonomous driving solutions. 

Although many self-driving vehicles remain in the testing and development phase, some are already 

operational on roads, capable of executing fundamental driving functions like self-parking, 

autonomous following, and obstacle avoidance. Notably, commercial services such as Waymo and 

Uber's self-driving taxi service have also emerged. 

However, the widespread adoption of self-driving cars faces numerous technical hurdles, including 

challenges related to perception and sensor fusion, decision-making algorithms, artificial intelligence 

and machine learning integration, high-precision mapping and positioning systems, and vehicle 

control and stability. Among these challenges, the domain of visual recognition for vehicle detection 

plays a pivotal role and is crucial for realizing the full potential and widespread deployment of 

autonomous driving technologies. 

Vehicle detection plays a crucial role in automotive electronic systems and automated driving 

technologies by enhancing driving safety, reliability, and enabling timely detection and resolution of 

related issues. Current vehicle detection methods encompass various approaches such as threshold-

based determination, classifier-based recognition, dynamic time regularization (DTW) algorithms, 

traffic surveillance video analysis, and sensor-based detection. To address the challenges associated 

with these methods, this paper presents a target detection task specifically tailored for vehicles in and 

around motorways. This is achieved by integrating the YOLOv3 model with multiple training 

strategies and model compression techniques to enhance vehicle detection accuracy. This research 

focuses on applications in autonomous driving scenarios, adding significant practical value to the 

field. The key innovations of this study include: 

Adoption of an enhanced version of the YOLOv3 model featuring a multi-layer feature fusion 

strategy that eliminates redundant high-level convolutional layers, leading to improved object 

detection accuracy. 

Integration of both abstract specialized semantic information from deep networks and fine-grained 

pixel structure information, provides advantages in classifying and recognizing four types of vehicles. 

Practical validation of the model under various conditions, including different lighting 

environments, backgrounds, road directions, and absence of road conditions, through rigorous testing 

of collected videos. 
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The rest of the paper is organized as follows. Section II provides an overview of previous solutions 

to this problem and related work. Section III describes the model used this time and briefly explains 

what kind of problem was solved by applying this model. Section IV focuses on the model training 

process and the experimental results and analyses. Section V concludes the paper. 

2. Related works 

Currently, common traffic detection methods can be divided into two categories: traditional 

methods and deep learning-based methods. Traditional methods refer to conventional machine 

learning algorithms. Some use the Histogram of Orientation Gradients (HOG) method to extract 

vehicle type features in an image, and then use Support Vector Machines (SVMs) to classify these 

features for vehicle detection. Although the accuracy of traditional machine learning-based methods 

for vehicle localization and type recognition is acceptable, these methods include very complex steps, 

require high human involvement, and take too much time. Therefore, these methods are not suitable 

for practical application scenarios. 

In recent years, deep learning has emerged as a promising approach for target detection and 

recognition, surpassing traditional methods in performance. Researchers have explored 

Convolutional Neural Networks (CNNs) for vehicle detection, utilizing extensively labeled vehicle 

images for network training without manual feature design. Additionally, unsupervised sparse coding 

techniques have been employed for pre-training the network, followed by softmax-based 

classification for vehicle categorization. 

The evolution of deep learning object detection methods began with R-CNN, incorporating region-

based suggestions through selective search. Subsequent advancements like SPP-net, Fast R-CNN, 

Faster R-CNN, and R-FCN refined region-based approaches. Despite their effectiveness, these 

methods often suffer from slow processing speeds and suboptimal detection accuracy, necessitating 

further improvements. 

To address these limitations, Redmond et al. introduced YOLO as an end-to-end object detection 

method, converting direct object detection into regression tasks. YOLOv2, an improved version, 

significantly enhanced detection speed while maintaining accuracy, making it suitable for detecting 

diverse categories with distinct differences like people, horses, and bicycles. However, for vehicle 

detection, which often relies on localized features like tires and headlights, YOLOv2's general 

approach may not be optimal. Therefore, specialized vehicle detection models such as YOLOv2 

Vehicle were proposed, incorporating k-means clustering for anchor box selection. Despite these 

advancements, challenges persist due to variations in road conditions and video viewpoints, leading 

to issues such as low detection accuracy and slow processing speeds. 

3. Method 

The YOLOv3 model employs a Convolutional Neural Network (CNN) to process images, dividing 

them into N x N grids, with each grid responsible for detecting targets whose centroids lie within it. 

Each grid cell in YOLOv3 predicts three boxes, each defined by parameters such as (x, y, w, h, 

confidence), and depending on the dataset, it also predicts probabilities for 20 or 80 categories. This 

model demonstrates advantages in mean average precision and single-frame detection time at iou=0.5 

compared to other models, as illustrated in Figure 1. 
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Fig. 1 Comparison of YOLOv3 with other models [7] 

 

Here, we employ the YOLOv3-SPP-ultralytics model to address the aforementioned issue of slow 

detection accuracy. To enhance the algorithm's accuracy in detecting small targets, we incorporate 

FPN-like upsample and fusion techniques in YOLOv3. This involves performing detection on feature 

maps of multiple scales, with the final fusion incorporating three scales (the other two scales being 

26×26 and 52×52, respectively). 

The YOLOv3-SPP model utilizes DarkNet-53 as its backbone network for feature extraction. 

DarkNet-53 employs continuous 3×3 convolution and 1×1 convolution, comprising a total of 53 

layers with associated weights, as depicted in Fig. 2. 

 
Fig. 2 Schematic diagram of DarkNet-53 
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Fig. 3 Structure of yolov3 network. 

 

The YOLOv3 network structure, depicted in Figure 3, underwent modifications in our study. We 

replaced the YOLOv3 skeleton network with ResNet50-VD to enhance speed and accuracy compared 

to the native DarkNet53 network. Moreover, we explored different backbone network structures such 

as ResNet18, 34, and 101 to suit various scene scenarios. To achieve a balance between speed and 

accuracy, Deformable Convolution was employed instead of continuous 3x3 convolution in the 

Stage5 segment of the backbone network within our augmented YOLOv3 model. Additionally, the 

DropBlock module was integrated into the FPN section to enhance model generalization. 

The loss function used in this model is as follows:  
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Of these, the 𝑥𝑖 and 𝑦𝑖 are the centre coordinates of the box of the ith grid cell, and ωi and ℎ𝑖 

are the width and height of the box of the ith grid cell, and 𝐶𝑖 is the confidence level of the box of 

the ith grid cell, and pi(c) is the class probability of the box of the ith grid cell. The λcoord denotes 

the weight of coordinates lost, and λnoobj denotes the weight of the bounding box without object 

loss. Finally, the S2 denotes the S×S grid cell, and B denotes the box, and Ⅱi
obj

 denotes whether 

the object is located in cell i, and Ⅱij
obj

 denotes the jth box predictor in cell i that is "responsible" 

for the prediction. In Equation (1), the first line computes the coordinate loss, the second line 

computes the bounding box size loss, the third line computes the bounding box confidence loss with 

objects, the fourth line computes the bounding box confidence loss without objects, and the last line 

computes the class loss. 

We transform the target detection problem into a regression problem and train it using the 

regression loss function. We Train our prediction frames to approximate the correctly labeled frames 

using the regression equation loss function. 

               L(o, c, O, C, g) = λ1Lconf(o, c) + λ2Lcla(O, C) + λ3Lloss(l, g)     (2) 
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λ1Lconf(o, c)  is the confidence loss, the λ2Lcla(O, C)  is the classification loss, and 

λ3Lloss(l, g) is the localisation loss, and  λ1、λ2、λ3 is the balance coefficient. 

4. Experimental procedure and analysis 

4.1 Dataset 

This paper utilizes the UA-DETRAC dataset [8] for vehicle detection and tracking experiments. 

This large-scale dataset is primarily collected from road overpasses in Beijing and Tianjin (Beijing-

Tianjin-Hebei scenarios) and meticulously annotated with 8,250 vehicles and 1.21 million target 

object out-frames. The vehicles are categorized into four types: cars, buses, vans, and other vehicles. 

Weather conditions are classified into four categories: cloudy, nighttime, sunny, and rainy. 

Consequently, this dataset serves as a rigorous benchmark for real-world multi-target detection and 

tracking tasks. 

The dataset comprises 10 hours of video footage captured using a Canon EOS 550D camera at 24 

distinct locations across Beijing and Tianjin, China. The videos were recorded at 25 frames per second 

(fps) with a resolution of 960×540 pixels. The dataset encompasses a training set of 55,817 images, 

a validation set of 9,851 images, and a test set of 16,417 images, totaling 82,085 images for 

comprehensive evaluation and analysis. 

4.2 Model training and results 

This experiment is divided into a training stage and a testing stage. in the training stage, YOLOv3 

clusters the dataset and then uses the center of the clusters as anchor boxes (a priori boxes). Each 

anchor box predicts four values related to the coordinates. The most suitable anchor size (center of 

nine clusters) is calculated by k-means clustering. Our training set is used to train our anchor boxes 

to be closer to the correct box of the training set, thus forming our desired prediction box. In the 

testing phase, the data frames from the test set are processed and put into a convolutional neural 

network to generate predictions, which are then parsed, filtered for thresholding using non-maximal 

suppression (threshold iou=0.5) and visualized and finally spliced into a video. 

Effect Show As shown in Fig. 4, Fig 4. a is a close-up shot and Fig 4. b and c are distant shots. 

 
(a)                               (b) 

 
(c) 

Fig. 4 Effect display diagram 

4.3 Analysis and Extensible Applications 

The experimental results from the validation dataset demonstrate the effectiveness of the method, 

achieving a mean average precision (mAP) of 90.69% and a mean frames per second (fps) rate of 

19.1. Leveraging feature recognition and melting techniques, it enhances recognition accuracy, 

particularly in detecting and recognizing moving vehicles within the traffic system. This capability 
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finds application in various domains such as traffic flow detection, statistics on violated vehicles, 

vehicle tracking, and apprehension. 

Traffic flow monitoring is essential for effective traffic management, control, and information 

dissemination, directly impacting overall road section operation and management. Current traffic 

flow monitoring technologies include coil detection, geomagnetic detection, microwave detection, 

and video detection. Video detection, offering non-contact, high precision, and real-time monitoring 

advantages, holds significant potential in urban traffic flow monitoring applications. 

Illegal parking poses a common challenge contributing to road congestion and traffic order 

disruptions. Many cities are grappling with a significant number of illegal parking incidents, 

necessitating measures like increased patrols, electronic eye systems installation, and higher fines. 

The conclusions drawn in this study aid in identifying illegal parking through road vehicle monitoring, 

facilitating better traffic regulation and order maintenance. 

In vehicle pursuit scenarios, real-time monitoring and tracking of suspect vehicles assist law 

enforcement in quickly locating and apprehending suspects during pursuit incidents. Additionally, 

implementing video surveillance at community entrances and exits enhances community security and 

management efficiency by swiftly identifying vehicles. Analyzing mainline traffic parameters and 

combining them with ramp traffic queue length enables traffic light-controlled regulation of traffic 

flow onto highways. 

5. Conclusion 

In this paper, we utilized an enhanced vehicle detection model algorithm that improves upon the 

YOLOv3 model. This improvement includes optimizing anchor boxes through k-means++ clustering, 

improving the loss function with normalization to achieve scale consistency, and designing a multi-

layer feature fusion network to enhance feature extraction capabilities. Experimental results 

demonstrate the effectiveness of this model, with a mean average precision (mAP) of 90.69% and an 

average frames per second (fps) of 19.1. The enhanced recognition accuracy of the model addresses 

challenges in traffic detection systems, making it applicable in multiple areas such as traffic flow 

detection, violation vehicle statistics, and vehicle tracking. However, future improvements are needed 

to optimize convergence speed and training efficiency, achieving better scalability and wider 

application possibilities. 
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