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Abstract. The rapid evolution of mobile communication technologies like 5G and the anticipated 
emergence of 6G have necessitated enhanced resource utilization and reception efficiency in 
wireless communication systems. One of the challenges faced in existing systems is the resource 
competition arising from the overlapped transmission of pilot frequency and data. This paper 
addresses this issue by proposing a deep learning-based solution that leverages machine learning 
techniques to decode transmitted data efficiently. Through a combination of non-orthogonal pilot-
frequency and data-overlapped transmission schemes, the proposed solution effectively mitigates 
interference problems, leading to improved resource utilization and reception performance. 
Experimental and simulation analyses validate the efficacy and feasibility of the proposed approach, 
showcasing a decoding accuracy of up to 93% under specific conditions. 

Keywords: wireless communication; resource utilization; non-orthogonal guide frequency; data 
overlay transmission; deep learning. 

1. Introduction 
As 5G continues to advance, wireless communication technology is becoming increasingly pivotal 

in future communication applications. Offering higher speed, lower latency, and greater connection 
density, 5G creates a vast development landscape for emerging scenarios. The rapid progression of 
6G further amplifies communication demands, leading to an expansion in network services and 
equipment. For instance, the Internet of Things (IoT) is experiencing rapid growth, resulting in a 
multitude of connected devices using various protocols. This surge underscores the urgent need for 
efficient spectrum resource utilization, especially in managing spectrum radio resources to support 
ultra-high densities. 

In a wireless communication system, the fundamental workflow involves several stages. At the 
transmitting end, the source bit stream is encoded and modulated to generate modulated symbols. 
These symbols are then combined with frequency guide symbols for channel estimation and 
transmitted through the channel to the receiving end. Here, the receiver leverages the guide frequency 
for channel estimation, followed by symbol detection, demodulation, decoding, and bit stream 
recovery. The receivers estimation and recovery of the wireless channel significantly impact data 
recovery performance due to the complexity and dynamic nature of the wireless channel environment. 
To facilitate channel estimation, the transmitter assigns specific guide frequency symbols, such as 
DMRS signals and PT-RS signals, at different resource locations. The receiver then estimates channel 
information based on received guide frequency signals, contributing to subsequent data recovery 
processes. 

 
Fig. 1 Quadrature guides in existing communications Y = H[XD;XP] + N. 
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In 5G NR, data symbols and frequency-conducting symbols are assigned to distinct resource 

locations, ensuring their independence and orthogonality in both time and frequency domains. 
However, this allocation strategy creates a competitive dynamic between frequency-conducting 
symbols and data symbols within a fixed transmission resource. Increasing the resource allocation for 
frequency-conducting symbols diminishes the resources available for data transmission, resulting in 
less efficient utilization of data transmission resources. To address this challenge, we propose 
leveraging the robust information processing capabilities of artificial intelligence to design a receiver 
using non-orthogonal guided-frequency transmission. Our approach effectively mitigates the guided-
frequency resource overhead problem, as demonstrated through simulations in a broadband, high-
speed, and lightweight scenario, where our scheme significantly improves resource utilization and 
data recovery accuracy. 

The subsequent sections of this paper are structured as follows: Section II provides a review of 
related literature on guided channel estimation and artificial intelligence. Section III outlines our 
approach to managing the guided frequency and data transmission relationship in wireless 
communication systems, including the design of the AI/ML-based receiver. Section IV presents the 
experimental setup and analyzes the experimental results. Finally, Section V presents our conclusions 
based on the findings. 

2. Related works 
Wireless communication technology has evolved significantly, transitioning from 2G to the current 

5G era, driving substantial changes and conveniences in human society. The integration of Artificial 
Intelligence (AI) into wireless communications has enhanced spectrum utilization, signal processing, 
and network management, improving communication services. Notably, AI has seen success in image 
recognition and natural language processing, contributing to the development of advanced network 
structures like AMFISTANet and dl-based CSI feedback NN as discussed in literature [1] and [2]. 
Additionally, literature [3] explores AIs potential in optimizing 5G systems, covering network 
optimization, resource allocation, and other key areas 

Modern wireless communication systems face challenges due to the complex channel environment, 
impacting communication quality stability. Channel estimation plays a critical role in ensuring 
reliable signal transmission between transmitters and receivers. Guided-frequency-assisted 
techniques, using known guide frequency sequences, are commonly employed for accurate channel 
estimation and system performance improvement. Literature [4] introduces a scheme with combined 
guide frequencies for a collaborative relay network, addressing interference issues and estimating 
channel characteristics effectively. In [5], an adaptive guide frequency optimization algorithm reduces 
overhead in massive MIMO systems through compressed sensing theory. Additionally, [6] explores 
efficient frequency-guided transmission schemes across various systems to enhance performance and 
spectral efficiency. [7] proposes a channel estimation method based on WDSR networks, showing 
improved performance and reduced guide frequency overhead, albeit requiring further optimization 
for computational efficiency and time-varying characteristics consideration. 

3. Scheme design 
This section delves into non-orthogonal guided frequency and data overlay transmission schemes, 

leveraging artificial intelligence and machine learning for efficient signal reception. 

3.1 Non-orthogonal frequency conduction and data overlay transmission scheme  
As shown in Fig. 2, the input of the superimposed frequency-conducting processing model is the 

received symbol Y after modulation, frequency-conducting non-orthogonal superposition, and over-
channeling of the original information bit X. The output of the superimposed frequency-conducting 
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processing model (AI receiver) is the recovered information X of the original information bit X. The 
AI receiver can be used as an overlay on the original information bit X. The AI receiver can be used 
as an overlay on the original information bit X.  

 
Fig. 2 Transmission process of non-orthogonal guide frequency with data superposition 

 
Assume a downlink transmission with Nt transmitter antenna, Nr receiver antenna, and L layer 

under a transmission resource configuration of S subcarriers in the frequency domain and T symbols 
in the time domain. where the transmitter performs orthogonal amplitude modulation of order 2M on 
the information bitstream tensor X ∈{0,1} L×T×S×M to obtain the data symbol tensor XD∈C L×T×S 
(C denotes the set of complex numbers) Further, the transmitter performs non-orthogonal 
superposition of the guiding frequency with the data to obtain the superimposed symbols, i.e. 

 X⊙sqrt(V) + X⊙sqrt(W) = S  PD            (1) 
where XP∈C L×T×S denotes the guided-frequency symbol tensor, S∈C L×T×S is the superimposed 

symbol tensor, W∈R L×T×S and V∈R L×T×S (R denotes the set of real numbers) denote the data and 
the guided-frequency weight tensor, respectively, sqrt(-) denotes the square-root computation, and 
⊙ denotes the hadronic product. 
The superimposed symbols are transmitted through the channel and sent to the receiver to obtain the 
received signal, i.e. 

∑
=

+=
L

l
lrr H

1
rl, NS⊙Y                    (2) 

where Yr∈C T×S denotes the received signal of the rth receive antenna, 1≤r≤Nr and 1≤l≤L 
denote the receive antenna and transport layer indexes, respectively, Hr,l∈CT × S denotes the 
equivalent channel of the lth transport layer of the rth receive antenna, and Nr∈CT×S denotes the 
additive Gaussian white noise. Finally, the received signal Yr obtained from the Nrth receive antenna 
is spliced to obtain the final received signal Y∈C Nr×T×S.  

Under the above non-orthogonal frequency conduction and data superposition transmission 
scheme, the receiver f(-) scheme is designed to realize the high accuracy reception of the information 
bit stream tensor, i.e.                    

     
MSTL ×××∈ }1,0{))Xp(f(Y, = X' P             (3) 

where p(-) denotes the hard judgment process (p(b) = 0 when b < 0 and p(b) = 1 when b ≥ 0). 

 
Fig. 3 Non-orthogonal frequency guides with data superposition Y = H[XD+XP] + N 
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3.2 AI-based reception scheme  
The non-orthogonal guide-frequency and data overlay transmission scheme enhances channel 

estimation performance and maximizes resource utilization during data transmission. However, it 
faces a critical challenge: interference between the guide frequency and data due to their superposition. 
To address this issue, we propose leveraging an AI-based receiver for receiving superimposed 
symbols, significantly improving spectral efficiency and ensuring successful reception.  

Our design includes a convolutional neural network (CNN)-based receiver model tailored for 
wireless communication, specifically for decoding multiple data streams in multicarrier modulation 
systems. The CNN in this model handles signal processing tasks such as demodulation and channel 
estimation, extracting crucial features from the signal to improve system performance. The model 
incorporates multiple residual blocks to capture key features effectively and mitigate the gradient 
vanishing problem through shortcut connections, enhancing its learning capabilities. 

 
Fig. 4 Flowchart of the framework of the residual block. 

 
The model comprises two key components: the ResBlock and the overall receiver structure. The 

ResBlock class serves as a residual learning module featuring two convolutional layers and a 
LayerNorm layer. It performs two convolution operations on the input data, preserving original 
features and boosting learning capacity by adding the convolved output with the input through the 
ADDITION operation. The convolutional layer extracts features, while the LayerNorm layer 
normalizes input data, aiding in faster model training convergence. 

The Neural_receiver class constructs a comprehensive receiver network architecture, taking the 
OFDM modulated signal y and the known frequency guide signal template_pilot as inputs. The model 
preprocesses data to fit the convolutional layers input requirements and combines the received signal 
with the guide frequency signal in the channel dimension. 

In the network structure, an input convolutional layer initially extracts features from the combined 
signal. The signal then undergoes processing through a sequence of ResBlock modules to enhance 
important features layer by layer. The processed features are then mapped to bit estimates on each 
subcarrier via an output convolutional layer. Multiple dimensional transformations ensure correct 
convolution operations and reshape results. The final output is a reconstructed signal matrix z 
representing bit estimates for data streams on each subcarrier across symbol time periods and layers. 
This model effectively handles wireless communication signal recovery tasks in multi-layer multi-
stream transmission settings, showcasing the potential of deep learning in such systems. 

4. Experiments and results 
In this section, we will show experimental results analyzing our proposed AI/ML-based receiver 

model. First, we will present the dataset and parameter settings we used. Then, the performance 
comparison at different parameters is given through simulation. 
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4.1 Experimental setup 
1. dataset: 

In this experiment, we generate a dataset based on a wireless communication scenario. Specifically, 
we simulate a broadband, high-speed, and lightweight communication scenario with the following 
parameter settings: 
 

Table 1. Setting of specific parameters 
Parameter type parameter symbol Parameter setting 

Number of frequency domain subcarriers S 624 
Number of time domain symbols T 12 
Number of transmitting antennas Nt 2 

Number of receiving antennas Nr 2 
Number of transmission layers L 2 

Number of bits per symbol M 4 
User travel speed range - 3 ~120 km/h 

 
Table 2. Settings of training data 

Data Type 
Number 

of 
Samples 

Number of 
Antennas 

Number 
of 

Symbols 

Number of 
Subcarriers 

Number of 
Bits per 
Symbol 

Real/Imaginary 
Parts 

Received 
signal tensor 20000 2 12 624 - Yes 

Transmit 
Bitstream 20000 2 12 624 4 No 

Conductivity 
tensor - - 12 624 - Yes 

 
The following is a further explanation of the superimposed configuration of guide frequency and 

data for the above scenario in graphical form, using 12 subcarriers * 12 symbols as an example. 

 
Fig. 5 Overlay configuration of guide frequency and data. 

2. Parameter settings 
In this experiment, we performed multiple sets of settings for the training parameters of the neural 

receiver model in order to systematically evaluate the effects of different parameters on the models 
performance and to select the best combination. We first adjusted the total training period to (2000, 
5000, 8000) to determine the performance of the model under different training durations. Next, we 
set the learning rate for the optimizer, choosing 1e-3 to balance the speed of model parameter updates 
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with the stability of convergence. Next, we adjusted the number of residual blocks in the neural 
receiver model to 6 to explore the effect of model complexity on performance. Then, we tried different 
channel list settings including (48, 48, 48), (60, 60, 60), and (128, 128, 128) options to investigate the 
effect of the number of channels on the model performance. Finally, we also adjusted the number of 
samples per batch to 16 to determine the effect of batch size on model training effectiveness. These 
parameters were set to comprehensively evaluate the model performance and to find the best 
combination of parameters for accurate modeling of communication scenarios and efficient 
processing of received signals. 

4.2 Simulation Analysis 

 
Fig. 6 Receiver data recovery accuracy with different channels 

 
This section delves into a deep learning-based receiver efficiency scheme and simulates data 

recovery performance across various parameters. Three different channel configurations, namely [48, 
48, 48], [60, 60, 60], and [128, 128, 128], were tested due to their significant impact on model 
performance. As depicted in Fig. 6, initial training stages show relatively low accuracy across all 
models, which gradually improves with increased training rounds. The model with 128 channels 
exhibits slower convergence but maintains stable and minimal fluctuations, highlighting its training 
stability. Conversely, models with 48 and 60 channels demonstrate faster convergence but with 
slightly less stability and more fluctuations. Taking into account training time and reception efficiency, 
the model with 60 channels is deemed optimal, showcasing shorter training time alongside 
commendable accuracy. 

 
Fig. 7 Variation of data accuracy and loss during the training process 

 



 

 

Advances in Engineering Technology Research                EMMAPR 2024 
ISSN:2790-1688              Volume-10-(2024)  

636 

Fig. 7 illustrates the evolution of the data loss rate and accuracy rate throughout the training process. 
To enhance clarity, a moving average was applied to smooth the curves depicting verification 
accuracy and loss rate. Initially, theres a rapid decrease in loss rate and a corresponding increase in 
accuracy rate, indicating the models improved fit to training data and enhanced performance over 
time. Around the 2500-round mark, a noticeable inflection point occurs where the rate of change for 
both metrics slows down, likely due to increased training data necessitating more time and resources 
for learning and adaptation. Ultimately, the loss rate stabilizes around 0.28, while accuracy converges 
around 0.85, indicating commendable and stable model performance on the validation set. 

Taken together, the data accuracy of the receiver model can reach about 0.85 through the 
adjustment of different parameters, indicating that our receiver scheme is feasible. In the case that the 
guide frequency does not occupy independent resources, a good reception effect can be achieved. 

5. Conclusion 
In this paper, we introduce a non-orthogonal frequency guide and data superposition transmission 

scheme for wireless communication systems, based on a deep learning method, to decode the 
superposition transmitted data at the receiver side. The effectiveness and feasibility of the scheme is 
verified through experimental and simulation analysis, and the decoding accuracy of the receiver 
model can reach up to 93%, which provides a new solution to improve the resource utilization and 
reception effect of the communication system. 
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