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Abstract. Methods of data-driven fault diagnosis are of great significance to ensure the stability and 
reliability of bearings systems. However, the existing methods still encounter many challenges. From 
the perspective of data, a single domain signal cannot fully reveal complex industrial processes. From 
the perspective of the model, abstract features at different levels contain fault information with 
various importance, which affects the model performance. In this paper, an adaptive residual network 
based on multi-domain data is proposed to make up for the shortcomings of existing fault diagnosis 
methods. Firstly, FFT frequency domain analysis is conducted on time domain signals, and multi-
domain data are constructed together. Secondly, an adaptive attention mechanism is introduced into 
the residual block based on one-dimensional convolution to fuse shallow and deep features, so as to 
extract features more effectively. Finally, experiments on rolling bearings at Case Western Reserve 
University manifest that the proposed method is superior to other comparative methods in fault 
diagnosis. 
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1. Introduction 
In modern industrial manufacturing systems, as an integral part of rotating machinery, rolling 

bearings are vital to mechanical transmission, components coupling, and rotating efficiency 
improvement. However, as for common faults such as wear, indentation, and gap increase, it is 
necessary to diagnose and maintain faults in time to avoid unnecessary losses [1]. In recent years, 
effective and reliable methods of data-driven fault diagnosis have been widely concerned. 

Fault diagnosis combining signal analysis technology with deep learning method is the mainstream 
research at present. Common signal analysis methods include the analysis of the time domain, 
frequency domain, and time-frequency domain [2]. Through the time domain analysis such as mean 
value, maximum value, and root mean square of vibration amplitude, frequency domain analysis such 
as Fast Fourier Transform (FFT), or time-frequency analysis such as Wavelet Packet Transform 
(WPT) and Short Time Fourier Transform (STFT), the original vibration signal is usually processed 
and then input into the model for fault diagnosis [3]. 

As a deep learning model, CNN can perceive more representative local fault information in signals 
and realize more efficient fault classification by extracting detailed features. Initially, in the 
application of fault diagnosis based on the deep learning method, one-dimensional signals are 
transformed into two-dimensional ones to adapt to the two-dimensional model structure and extract 
features. For example, Zhao et al. designed a depth residual network to extract features from WPT 
time-frequency domain images using a dynamic weighting strategy [4]. Jin et al. used STFT for time 
domain signals and input it into the proposed deep learning network to realize compound fault 
diagnosis [5]. However, on the one hand, the structure of two-dimensional CNN is relatively complex, 
which improves the model accuracy at the cost of its calculation time. On the other hand, rough signal 
processing easily leads to irreversible loss of key fault information [6]. 

With the development of research, one-dimensional CNN has been proposed to directly process 
one-dimensional signals. Thanks to its lightweight model structure and high computational efficiency, 
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it has been widely used in fault diagnosis. For example, Chen et al. proposed improved CNN and 
LSTM to directly process one-dimensional time-domain signals and realized efficient bearing fault 
diagnosis by mining spatiotemporal features in signals [7]. Junior et al. designed a multi-head 
1DCNN structure, which used a multi-channel structure to extract the signal features of multi-source 
time-domain vibration [8]. 

To sum up, the method based on deep learning has been applied to industrial fault diagnosis. 
However, the existing methods still face the following problems. For one, there are multi-angle signal 
representations for the machinery operation, and the model data input in a single domain such as the 
time domain or frequency domain lacks complementary information between different signal 
representations. For the other, although residual learning has been widely adopted to solve the 
network degradation caused by the deepening of model layers, the simple superposition of shallow 
and deep features tends to ignore key information and trigger information redundancy. 

To solve the above problems, this paper proposes a attentive residual network  based on 
homologous multi-domain data (MDARN). Firstly, the original time domain signal is analyzed by 
FFT to obtain the signal with frequency domain characteristics, and the more robust data is 
constructed. Then, an adaptive residual fusion block based on one-dimensional CNN is developed, 
which comprehensively considers the macro positioning of the shallow layer and the fault details of 
the deep layer. In addition, experiments on the CWRU data set show that the proposed method 
achieves high-precision fault diagnosis. 

The main contributions of this paper are as follows: 
(1) A fault diagnosis framework based on multi-domain data is proposed, which uses one-

dimensional CNN to extract features from time domain and frequency domain signals simultaneously, 
considering the complementary information from different perspectives. 

(2) A residual method of fusing relationship-aware attention is designed so that the network can 
be adaptive to select and fuse important parts of shallow and deep features in the feature extraction. 

 
Figure 1 Overall Model Diagram 

2. Proposed Methods 
Figure 1 shows the overall model framework of MDARN proposed in this paper. The model is 

mainly composed of 1DCNN and adaptive residual blocks, whose core mainly includes time domain 
signal, frequency domain signal, and the fault information learning of mixed multi-domain deep 
features. The specific details of the model will be introduced in following sections. 

2.1 Construction of Homologous Multi-Domain Data 
Sensors installed on the bearings system capture its vibration according to a fixed frequency and 

obtain a large number of time series vibration signals for subsequent deep learning modeling through 
data transmission and database storage. 

The time domain signal reflects the distribution of bearing vibration amplitude in the time 
dimension. However, industrial processes are usually complex, nonlinear, and non-stationary, thus 
data mining with single-domain representation is limited for fault prediction. Frequency domain 
analysis can map time domain signals to other angular representations, which can reveal how many 
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signals are in a frequency band. FFT is a simple and fast frequency domain analysis used in this paper 
to obtain frequency domain signals. 

In this paper, time-domain and frequency-domain signals are used as model inputs simultaneously 
to construct homologous multi-domain data, which supplements and enriches the original vibration 
signals from a more comprehensive perspective. Assuming there are T instances of , 

refers to one-dimensional original vibration signals collected in the t period with P data points 
and  represents the health status label corresponding to the signal. The specific process of 
homologous multi-domain data construction is: 

                       
(1) 

 represents parallel combination; the one-dimensional time and frequency domain 
signals converted by FFT are directly used as the subsequent model input based on one-dimensional 
CNN. 

2.2 One-Dimensional Convolution Neural Network 
One-dimensional CNN uses a one-dimensional convolution kernel to slide on sequence data at a 

fixed step size to capture local receptive fields, which can be used to directly process one-dimensional 
signal input in the time domain and frequency domain. Meanwhile, CNN characterized by parallel 
computing can complete the parallel feature extraction of multi-domain data simultaneously. One-
dimensional CNN refines abstract features at higher levels through the alternate operation of 
convolution and pooling. The mathematical calculation formula of convolution is: 

                         (2) 

is the l-layer network input with i as the original parameter quantity;  and   represent 
the parameter weight and error offset of the convolution kernel respectively. f is the activation 
function and ReLU is adopted in this paper. Finally,  is output with j as the parameter, which 
can be used as the input of the next layer of network. In addition, the number of channels output by 
the network is the same as that of convolution kernels. 

2.3 Attention Residual Fusion Module 
A residual learning strategy can more effectively solve the gradient disappearance or gradient 

explosion that may occur in the model training, which is widely used in fault diagnosis [9]. As shown 
in the upper left of Figure 2, after the shallow feature short circuit jumps to two-parameter layers in 
the traditional residual block, the output containing both macro fault positioning and local fault details 
is obtained. However, the multi-level features are blindly added, which makes the model effect 
vulnerable to redundant information. In recent years, the attention mechanism of plug for immediate 
usage has been introduced into the existing research. 
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Figure 2 Residual Block and Diagram of Relation-Aware Attention Structure 

The attention mechanism is inspired by human visual attention selection, which makes the model 
pay more attention to abstract features useful for final prediction in the training and gives them greater 
weights [6]. Thus, the model layers are deepened with increasing abstract features when avoiding the 
influence of redundant information on the model’s robustness and generalization. Besides, channel 
attention such as SE-net, SK-net, etc. is common, which are used to emphasize the information about 
channel angle in feature mapping [10], [11]. According to Figure 2, this paper designs an attention 
mechanism that considers the correlation between abstract features at different levels, instead of 
skipping in the traditional residual process. Attention is input into shallow and deep features of 

simultaneously, and channel representation based on common features  is 
obtained by binary addition and average pooling. Then, the shared full connection layer is squeezed 
and the independent full connection layer is expanded. Then, the shared full connection layer is 
squeezed and the independent full connection layer is expanded. softmax function learns the 
importance weights  of feature channels at different levels to model prediction and 
gives them to the original input. Finally, adaptive residual fusion is realized by binary addition. The 
mathematical calculation of Relation-aware attention is: 

             (3) 

  (4) 

  (5) 
 and  represent the channel-based global average pooling and softmax processing 

respectively.  and represent the full connection layer with corresponding weights of output 
and input features. Finally, the after adaptive feature selection and fusion is output. 

3. Experiment and Result Analysis 
To prove the effectiveness of the proposed method, experiments are conducted on the open data 

set of rolling bearings provided by CWRU [12]. 
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3.1 Bearing Data Set 
The test rig of CWRU Bearing Data Center shown in Figure 3 simulates the real operation of the 

bearing system, which collects vibration signal data under different working conditions. In this paper, 
four sub-datasets are used by setting the motor speed and motor load to various values at the sampling 
frequency of 12 kHZ. Their specific information can be seen in Table 1. Each sample has its 
corresponding health status label, such as normal state, outer ring fault (OF), inner ring fault (IF), and 
ball fault (B), with each at varied fault degrees. In other words, fault diagnosis based on the CWRU 
data set is a problem about ten classifications. 

 
Figure 3 The Test-Rig 

In each sub-data set, this paper extracts the data of every three sampling of the signal, and each 
signal sample contains 2048 data. In addition, each original time domain signal is transformed by 
FFT, and the frequency domain signal containing 2048 data is also obtained. The time domain and 
frequency domain signals are combined into homologous multi-domain data for experiments. 

Table 1 CWRU Experimental Data Set 
Datasets Motor Speed

（rpm） 
Motor Load
（hp） 

Numbers of 
Instances 

Description 

CWRUA 1730 3 1200 Normal, B007, B014, 
B021, IR007, IR014, 

IR021, OR007, OR014, 
OR021 

CWRUB 1750 2 1200 

CWRUC 1772 1 1200 

CWRUD 1797 0 1200 

3.2 Experimental Design 
To prove the effectiveness and superiority of the proposed method, comparative experiments are 

conducted under four sub-datasets. The methods used in the experiment include MDARN, deep 
learning methods based on time domain signals such as WDCNN [13], ResCNN [9], one-dimensional 
SE-net-based CNN (SE-CNN) premised on channel attention, and one-dimensional FFT-based CNN 
(FFT-CNN) based on frequency domain signals. The evaluation index used in the experiment is the 
accuracy commonly used in classification problems. 

The experiment uses a random number seed to divide the data set according to the 75% training 
set and 25% test set, repeating the experiment 20 times to reduce the error caused by random factors. 
Meanwhile, the early stop mechanism is introduced with its value set to 10 to avoid over-fitting in 
the model training. In addition, the validity and stability of fault classification are evaluated by 
calculating the mean and standard deviation of many experiments’ accuracy. 

3.3 Analysis of Experimental Results 
Table 2 Experimental Results Under Four Data Sets 

Accuracy (%) CWRUA  CWRUB  CWRUC  CWRUD 
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Methods Mean Std  Mean Std  Mean Std  Mean Std 

WDCNN 97.77 0.99  98.80 0.93  98.52 0.85  98.32 0.64 
FFT-CNN 94.38 1.49  95.35 1.52  95.70 1.54  93.60 1.69 
ResCNN 98.70 0.66  99.43 0.58  99.28 0.59  99.17 0.87 
SE-CNN 98.52 0.82  99.03 0.56  99.07 0.63  98.93 0.66 
Proposed 99.23 0.54  99.77 0.26  99.67 0.30  99.55 0.41 

The accuracy means and standard deviation of the proposed method and the comparative method 
are counted and listed as shown in Table 2. Firstly, as for single-mode input data, the method based 
on the time domain signal is more effective than that based on the frequency domain signal. For 
example, the accuracy of WDCNN is 97.77%, higher than that of FFT-CNN in the CWRUA data set, 
which proves that the original vibration signal can provide more abundant fault information than the 
converted frequency domain signal. Secondly, ResCNN and SE-CNN perform better than WDCNN. 
For example, the accuracy of ResCNN and SE-CNN under the CWRUB data set exceeds 99.00%, 
while WDCNN is only 98.80%. This proves that residual learning and attention mechanism is vital 
to promote the model’s robustness and generalization. Finally, the proposed method has the highest 
fault classification accuracy under four data sets, which are 99.23%, 99.77%, 99.67%, and 99.55% 
respectively. Meanwhile, the standard deviation is lower than other comparison methods, which 
manifests that adopting multi-domain input data has more complementary information. Besides, a 
feature extraction strategy using parallel and adaptive residuals can significantly improve the 
prediction performance of the model with higher stability. 

 
Figure 4 Confusion Matrix of the Proposed Method Under Four Data Sets 

To observe the classification performance of MDARN, a confusion matrix is used to present the 
prediction of each health category. Figure 4 shows the classification effect of the proposed method 
under four data sets, and the rows and columns in each graph represent samples’ real labels and the 
predicted labels of model output respectively. It can be seen that the proposed MDARN has a 
remarkable fault diagnosis effect. For example, the accuracy rate on oblique diagonal lines in 
CWRUB data sets has reached 100% with rare state classification errors in other data sets such as C3 
and C9, manifesting that MDARN has achieved a high-level fault diagnosis. 
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Figure 5 Visualization of Feature Extraction.  

(a)Original Vibration Signal. (b) WDCNN. (c) FFT-CNN.  
(d) ResCNN. (e) SE-CNN. (f) MDARN. 

To compare the extraction ability of models’ abstract features, t-NSE is used to map high-
dimensional features to low-dimensional planes to visualize different methods’ intuitively. According 
to Figure 5 consisting of the original vibration signal, the four comparison methods, the proposed 
method, and the feature t-NSE scatter plot before the classifier, ten kinds of health states are scattered 
irregularly to the same aggregation. In Figure (c), different clusters are roughly divided by the single 
frequency domain data, but 5, 6, and 10 are still mixed together. In figures (b), (d), and (e), single-
time domain data with good classification effects can clearly distinguish most health states, but 5 and 
10 cannot be well distinguished among the three methods. It is found in Figure (f) that compared with 
the first four methods, the distance between different clusters is further increased and the inner class 
is further converged. Therefore, the proposed method can better mine the complementary and deep 
information in multi-domain data, achieving higher accuracy of fault prediction. 

 
Figure 6 Weight Visualization of Relation-Aware Attention 

Relation-aware attention can adaptively fuse shallow and deep abstract features in residual 
connection, emphasizing useful channels and weakening useless ones. Figure 6 displays the heat map 
of attention activation degree for selected ten samples of different health conditions, with each column 
representing the adaptive selection of shallow and deep features in the corresponding module. In each 
heat map, every square represents the weights of the s-th sample and the n-th channel, with the depth 
of color representing the weight value. Taking the lower left figure as an example, the weights of the 
10th and 20th channels are close to 0.9, which indicates that more useful fault information exists in 
this channel. In addition, the weights of the 15th and 19th channels are about 0.1, which indicates that 
their characteristics are not conducive to fault prediction but suppressed. Moreover, the weight values 



 

462 

Advances in Engineering Technology Research EMMAPR 2024 
ISSN:2790-1688 Volume-10-(2024)  

of shallow and deep feature channels of the same module are correspondingly added to 1. This 
experiment proves the effectiveness of attention adaptive fusion, and there are some useful parts for 
fault prediction in both shallow and deep abstract features. 

4. Summary and Future Work 
Regarding the massive original vibration signals collected by sensors in industrial processes, the 

inputs in different domains have various sensitivities to faults, which is easy to ignore the 
complementary key information only by using signals in a single domain. To enhance the robustness 
of model training, the time-domain and frequency-domain signals are combined to construct 
homologous multi-domain data by using signal analysis technology. At the same time, given that with 
the deepening layers of deep learning model, multi-level feature mapping contributes to fault 
prediction to varying degrees. Based on the parallel feature extraction strategy of lightweight one-
dimensional CNN, an adaptive residual fusion mechanism is introduced to better select important 
features at different levels in the residual process. Finally, through the comparative experiment on the 
rolling bearing data set of CWRU (including four sub-datasets), the effectiveness of multi-domain 
data and the new parallel residual network structure is verified. The accuracy rate on the four sub-
data sets is higher than 99.20% with 99.77% as the highest. 

Much related work still needs to be done in the future. Firstly, due to the complex and changeable 
industrial processes, the proposed method needs to be verified on more industrial examples and more 
massive industrial data to test the effectiveness and generalization ability of fault diagnosis. Secondly, 
the parallel computing technology of lightweight CNN is significant to improve the model efficiency, 
which needs further exploration. Finally, how to use efficient signal analysis technology to construct 
homologous multi-domain data and provide richer information for fault diagnosis is worthy of further 
experimental study in the future. 
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