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Abstract. The aeroengine boasts a complex structure and operates in a demanding environment 
characterized by prolonged exposure to extreme conditions such as high temperature and pressure. 
This type of system is susceptible to nonlinear faults. To enhance the accuracy of aeroengine 
predictions, this paper proposes a fault diagnosis model based on stacking-based ensemble learning. 
Initially, the KNN algorithm (K-Nearest Neighbor) and the AdaBoost algorithm (Adaptive Boosting) 
are optimized by hyperparameters to further augment the accuracy of a single model. Subsequently, 
the XGBoost model is employed as a meta-learner to fuse the prediction outcomes of the optimized 
KNN and AdaBoost models. The stacking ensemble learning technique is then applied, followed by 
the output of the prediction results. Through confirmatory experiments, the accuracy rate following 
stacking integrated learning improved to 0.9591, while the standard deviation was further minimized 
to 0.0074. The findings demonstrate that the model is remarkably precise and robust, and can be 
implemented in aeroengine fault diagnosis. 

Keywords: Ensemble learning; Stacking; KNN; AdaBoost; XGBoost; Aircraft engine. 

1. Introduction 
In the 21st century, aeroengines will maintain their significant position in advancing human 

scientific and technological progress and social development[1]. However, owing to the intricate 
precision of aeroengines and their operating environment which is characterized by extreme 
conditions such as high temperature, high pressure and heavy load for extended periods, engine 
failure is inevitable, leading to considerable personnel and economic losses. Between 1949 and 1999, 
29 significant flight safety accidents occurred, with aircraft failure accounting for a high proportion 
of 68.44% as the primary cause of these accidents[2]. Between 1995 and 2015, 69 general aviation 
accidents transpired, with engine failure being the most common unsafe state, accounting for 8 of 
these accidents[3]. As a result, aeroengine fault research has always been a major obstacle both 
domestically and internationally[4]. 

Currently, aeroengine fault research methods can be broadly classified into the following three 
categories: fault diagnosis based on the construction of aeroengine mathematical and physical models, 
fault diagnosis based on sensor signal processing, and fault diagnosis based on data drive[5]. Based 
on the method of constructing a mathematical model, Zhang Peng[6] and Lambert[7] explored the 
fault detection method that employs the Kalman filter directly to the nonlinear model of the engine. 
Borguet et al.[8] investigated the addition of model deviation to the original Kalman filter as an 
additional random measurement error, thus resulting in a more precise improved Kalman filter. 
Nevertheless, the aeroengine itself is an extremely complex and nonlinear model, and the method of 
constructing mathematical models presents a challenge where high accuracy of the model 
corresponds to high accuracy of diagnosis, and vice versa. Presently, diagnosing aeroengine faults 
using pure mathematical models proves to be difficult. 

The signal processing-based method effectively overcomes the difficulty of modeling high-
precision mathematical models. Fault diagnosis through signal processing can be categorized into 
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single parameter and multi-parameter fusion diagnosis methods. In single parameter diagnosis, 
Wanyucheng et al.[9] utilized the metal elements' content parameter in the oil sample as a 
characteristic parameter to analyze the wear fault of aeroengine using extension set theory. 
Zhaohongli et al.[10] studied aeroengine performance degradation using the engine exhaust 
temperature margin as the characteristic parameter. However, the above single parameter diagnosis 
research exhibits a high false alarm rate and lacks high robustness. Thus, research on multi-parameter 
fusion was conducted. Hujinhai et al.[11] proposed installing multiple vibration sensors to form a 
network and applying the D-S evidence decision fusion method for final diagnosis. Han et al.[12] 
designed the gain scheduling of a PI controller based on the dual scheduling of speed and health 
parameters, comprehensively considering the engine fault problem using the dual parameters. 
Although the above multi-parameter research applies the method of parameter fusion, the aero-
engine's complex mechanical coupling structure and time-varying speed and torque result in variable 
working conditions, increasing the difficulty of sensor acquisition and signal processing, which 
affects accuracy negatively. 

The employment of data-driven fault diagnosis techniques has gradually gained prominence in 
contemporary research. In the domain of shallow neural networks, Xuqihua et al.[13] and Wei xunkai 
et al.[14] have directly implemented SVM for the purpose of fault diagnosis of aeroengine. Further 
advances in the application of support vector machine in aeroengine fault detection have been made 
by Wujunfeng et al.[15], Zhuyongxin et al.[16] and Islam et al.[17], leading to a marked improvement 
in the accuracy of prediction. Sun Xiaoyu[18], on the other hand, utilized three machine learning 
models for prediction and verified that the random forest algorithm possesses superior learning 
capabilities for higher dimensional data when compared to the support vector machine algorithm. 
Zedda et al.[19] have introduced sparse Bayesian algorithm in engine gas path fault diagnosis, 
achieving commendable results. However, a large proportion of the research findings rely on a 
solitary machine learning model, and consequently suffer from issues of low accuracy and limited 
robustness. 

Given the aforementioned issues, this paper puts forth a model grounded in stacking ensemble 
learning, which serves to lessen feature dimensionality and forestall overfitting. Subsequently, the 
hyperparameter-optimized base learning machines are employed for individual prediction of engine 
parameters, followed by the integration of stacking for comprehensive learning to achieve engine 
parameter prediction. This approach, through hyperparameter optimization, amalgamates the benefits 
of both models, resulting in not only a significant improvement in the accuracy of fault diagnosis, but 
also a robustness that is both formidable and reliable. Experiments conducted indicate the feasibility 
and effectiveness of this method. 

2. Model part  

2.1 Aeroengine fault diagnosis model based on stacking ensemble learning 
Given that this task pertains to a classification problem, the customary KNN and AdaBoost 

algorithms in machine learning are utilized to compute and optimize the hyperparameters. In this 
paper, hyperparameter tuning grid search is employed, whereby every possibility is tried via a circular 
traversal of all the candidate parameter selections, with the best parameter ultimately serving as the 
final outcome. In light of the fact that the accuracy of a single model is not particularly high, an 
integrated learning model grounded in stacking is put forth in order to enhance the performance of 
aeroengine prediction. 

As illustrated in Fig. 1, the fault diagnosis model of stacking integrated learning, proposed in this 
paper, comprises two layers. The first layer is grounded in the base learner, specifically the KNN and 
AdaBoost algorithms following hyperparameter optimization, which in turn deploy the base learner 
for prediction. The second layer is built around the XGBoost meta learner, leveraging the prediction 
outcomes of the base model as the input for the XGBoost meta model, ultimately yielding the fault 
prediction outcomes of the aeroengine. 
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Fig.1 stacking ensemble learning model 

2.2 KNN algorithm 
2.2.1 Principle of KNN algorithm 

K-nearest neighbor, initially introduced by Cover T et al.[20] in 1967, is regarded as one of the most 
traditional classification algorithms in data mining classification technology. The fundamental 
principle of the algorithm involves computing the distance between the unknown sample and the 
designated known sample through employment of the nearest sample instance as a reference. 
Subsequently, the K known samples that are closest to the unknown sample are selected, and the 
unknown sample is classified into a category that has a large proportion, in accordance with the 
majority-voting approach. 
2.2.2 The key of KNN algorithm 

1.To determine the number of nearest sample instances, one must strike a balance between 
overfitting and underfitting. If the K value is too large, underfitting is likely to occur, whereas if it is 
too small, overfitting is probable. This paper employs the KNN algorithm in scikit-learn, where the 
n_neighbors parameter is used to determine the K value. Thereafter, hyperparameter tuning will be 
conducted to ascertain the optimal K value. 

2.A distance function is required to compute the distance between two samples. For example, to 
calculate the distance between two points A(X1, Y1) and B (X2, Y2) in a two-dimensional space, one 
may use the Euclidean distance or Manhattan distance formulas as given in Equation (1) and Equation 
(2), respectively: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸) = �(𝑥𝑥2 − 𝑥𝑥1)2 + (𝑦𝑦2 − 𝑦𝑦1)2    (1) 
𝑀𝑀𝐸𝐸𝐸𝐸ℎ𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸) = |𝑥𝑥2 − 𝑥𝑥1| + |𝑦𝑦2 − 𝑦𝑦1|       (2) 

Euclidean distance is the most commonly used method for measuring distance, owing to its 
simplicity, ease of computation, and versatility. Consequently, this paper employs the Euclidean 
distance as the distance measurement method. 

2.3 AdaBoost algorithm 
2.3.1Basic principle of AdaBoost algorithm 

In 1995, Freund and Schiprare[21] introduced an extended boosting algorithm called AdaBoost. 
The name stands for adaptive boosting, as the algorithm's adaptability is exemplified by elevating the 
weight of misclassified samples while reducing the weight of correctly classified ones to train the 
subsequent basic classifier. Each iteration supplements a new weak classifier until the minimum error 
rate is achieved, thereby determining the final strong classifier. 
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2.3.2 AdaBoost algorithm flow 
1.First, the weight distribution of the initial training data. Each training example is given the same 

weight 𝜔𝜔𝑓𝑓 at the beginning，as shown in equation (3). The initial weight distribution 𝐸𝐸1(𝐸𝐸) of the 
training sample set is shown in equation (4):  

𝜔𝜔𝑓𝑓 = 1
𝑁𝑁

                  (3) 

𝐸𝐸1(𝐸𝐸) = (𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁) = (1
𝑁𝑁

, … , 1
𝑁𝑁

)    (4) 
2.Then iterate t=1,…,T 
(1) Select a weak classifier h with the lowest error at presentas the t-th basic classifier 𝐻𝐻𝑡𝑡, and 

calculate the weak classifier ℎ𝑡𝑡: {−1,1}, The error of the weak classifier 𝐸𝐸𝑡𝑡 on is equation (5),𝐸𝐸𝑡𝑡 is 
the𝐻𝐻𝑡𝑡(𝑥𝑥) misclassification sum of weight of sample. It's the sum of the weights of the misclassified 
samples. 

et = P(Ht(xi) ≠ yi) = ∑ ωtiI(Ht(xi) ≠ yi)N
i=1   (5) 

(2) Calculate the weight of this weak classifier 𝛼𝛼 in the final classifier as equation (6): 
𝛼𝛼𝑡𝑡 = 1

2
ln �1−𝑒𝑒𝑡𝑡

𝑒𝑒𝑡𝑡
�             (6) 

(3) Update the weight distribution 𝐸𝐸𝑡𝑡+1 of the training sample as equation (7), where 𝑍𝑍𝑡𝑡 is the 
normalized constant as equation (8): 

 
𝐸𝐸𝑡𝑡+1 = 𝐷𝐷𝑡𝑡(𝑖𝑖)exp (−𝛼𝛼𝑡𝑡𝑦𝑦𝑖𝑖𝐻𝐻𝑡𝑡(𝑥𝑥𝑖𝑖))

𝑍𝑍𝑡𝑡
          (7) 

𝑍𝑍𝑡𝑡 = 2�𝐸𝐸𝑡𝑡(1 − 𝐸𝐸𝑡𝑡)              (8) 
3.Each weak classifier is combined according to the weight of the weak classifier 𝛼𝛼𝑡𝑡, as shown in 

equation (9): 
𝑓𝑓(𝑥𝑥) = ∑ 𝛼𝛼𝑡𝑡𝐻𝐻𝑡𝑡(𝑥𝑥)𝑇𝑇

𝑡𝑡=1             (9) 
Then, a strong classifier is obtained through the function of the 𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸�𝑓𝑓(𝑥𝑥)�, as shown in equation 

(10): 
𝐻𝐻𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸�𝑓𝑓(𝑥𝑥)� = 𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸(∑ 𝛼𝛼𝑡𝑡𝐻𝐻𝑡𝑡(𝑥𝑥)𝑇𝑇

𝑡𝑡=1    (10) 
Among them, because the weight update depends on the weak classifier 𝛼𝛼 and error rate 𝐸𝐸 the 

weight update formula expressed by error rate 𝐸𝐸 can be obtained: 
When the sample is misclassified, it is equation (11):  

𝐸𝐸𝑡𝑡+1(𝐸𝐸) = 𝐷𝐷𝑡𝑡(𝑖𝑖)
2𝑒𝑒𝑡𝑡

             (11) 
When the samples are paired, it is equation (12): 

𝐸𝐸𝑡𝑡+1(𝐸𝐸) = 𝐷𝐷𝑡𝑡(𝑖𝑖)
2(1−𝑒𝑒𝑡𝑡)

             (12) 

2.4 XGBoost algorithm 
XGBoost, short for eXtreme Gradient Boosting, is a machine learning project that was developed 

by Chen et al.[22] . It is an implementation of the boosting algorithm, which is aimed at boosting the 
speed and efficiency of the algorithm to an extreme level. The core algorithm follows these steps: 

(1) The algorithm grows a tree by continuously splitting features, and adds one tree at a time to fit 
the residual of the previous prediction. The predicted value is represented by equation (13): 

𝑦𝑦� = ∅(𝑥𝑥𝑖𝑖) = ∑ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)𝐾𝐾
𝑘𝑘=1          (13) 

In the equation,𝑓𝑓(𝑥𝑥) is the node weight function, It can be expressed as 𝑓𝑓(𝑥𝑥) = 𝜔𝜔𝑞𝑞(𝑥𝑥), 𝜔𝜔 is the 
weight of the leaves. 

(2) The objective function of XGBoost is a combination of the loss function and the regularization 
term, and can be expressed as equation (14): 

𝐿𝐿(∅) = ∑ 𝐸𝐸(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑖𝑖
𝑖𝑖=1 + ∑ 𝛺𝛺(𝑓𝑓𝑘𝑘)𝑘𝑘

𝑘𝑘=1    (14) 
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In the equation, 𝑦𝑦�𝑖𝑖  is the output of the entire cumulative model, the regularization term is 
∑ 𝛺𝛺(𝑓𝑓𝑘𝑘)𝑘𝑘
𝑘𝑘=1 , which is a function of the complexity of the tree, and its reified expression is 𝛺𝛺(𝑓𝑓) =

𝛾𝛾𝛾𝛾 + 1
2
𝜆𝜆‖𝑤𝑤‖2, T is the number of leaves, 𝑤𝑤 is the fraction of a leaf node. 

3. Experimental part 

3.1 Experimental equipment and environment 
The experimental environment of this model is shown in Table 1 below. The system environment 

is windows10 and the hardware environment is AMD Ryzen5 5600x CPU@3.70GHz, RAM 16G, 
the software environment is Python3.9.7 in the Jupiter notebook environment, and the machine 
learning algorithm uses the scikit-learn integrated library and XGBoost algorithm. 

Table 1 experimental equipment and environment 

System  
Windows 10 AMD Ryzen 5 5600X CPU@3.70GHz, RAM 16G 

Software Python 3.9.7 Jupyter notebook 

Packages 
Data Wrangling NumPy 1.20.3 & pandas 1.3.4 

Visualization Matplotlib 3.4.3 & Scikit-plot 0.3.7 
ML algorithm scikit-learn 0.24.2 & XGBoost 1.7.4 

 

3.2 Data set introduction 
3.2.1 Source and content 

The information utilized in this project originates from the turbofan engine degradation simulation 
data set (TEDS), which is included in the PCoE DataSets provided by NASA[23]. Please refer to Table 
2 for a detailed file description of the original dataset. 

Table 2 file description of original data set 

 Data Set Train 
trajectories 

Test 
trajectories Fault Models 

1 FD001 100 100 HPC Degradation 
2 FD002 260 259 HPC Degradation 

3 FD003 100 100 Two(HPC Degradation, 
Fan Degradation) 

4 FD004 248 249 Two(HPC Degradation, 
Fan Degradation) 

 
The dataset simulates four distinct scenarios, each involving different combinations of operating 

conditions and fault modes. It records multiple sensor channels to describe the evolution of faults. 
Each sample comprises 26 columns of data separated by spaces. The "id" list specifies the unique ID 
number of the engine, while the "cycle" column indicates the operational sequence from 1 to the cycle 
when the fault occurs. Columns {st1, st2, st3} represent the engine's operational settings, and columns 
"S1" through "S21" represent the measured values from sensor 1 to sensor 21. 
3.2.2 Exploratory data analysis 

Prior to processing the turbofan engine dataset, this paper conducted exploratory data analysis 
(EDA) on both the training and test datasets. Figure 2 illustrates the variation of engines 1 through 
10 on sensors 18 to 21 through a scatter diagram. It is discernible that the records of sensors s18 and 
s19 form a straight line, indicating that the data from these two sensors remain relatively constant. 
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Furthermore, the dataset contains several low-impact parameters that are similar in nature and require 
subsequent adjustments. 

 
Fig. 2 scatter diagram of operation records from engine ID 1 to 10 on sensor s{18,19,20,21} 

3.3 Dataset Feature Engineering 
3.3.1 Dataset feature selection 

As the standard deviation can signify the discreteness of a dataset, equation (15) is utilized to 
calculate the standard deviation: 

𝑆𝑆 = �∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)𝑛𝑛
𝑖𝑖=1

2

𝑓𝑓−1
            (15) 

The coefficient of variation can be computed through equation (16) to eliminate the influence of 
different units and averages on comparing the degree of variation among multiple variables:  

𝐶𝐶.𝑉𝑉 = 𝑆𝑆
�̅�𝑥

× 100%          (16) 
While the original features in the dataset encompass observations from settings 1 to 3 and from 

sensor 1 to sensor 21, some sensors' records demonstrate minimal change, as depicted in Fig. 3 and 
Fig. 4. Specifically, {st3, s1, s2, s5, s6, s8, s10, s13, s16, s18, s19} show little variation, and some are 
even close to 0. Hence, these sensor features are removed as part of the dataset's dimensionality 
reduction. 
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Fig. 3 Features Standard Deviation 

 
Fig. 4 Features Absolute value of Coefficient of Variation 

As indicated in Table 3, after reducing the dataset's dimensionality, several artificial variables must 
be appended from the original data to prevent the model from overfitting. Thus, the moving average 
and rolling standard deviation are integrated into the last 10 operating cycles of each setting and 
sensor. Consequently, the dataset that incorporates these new features is referred to as the "plus 
dataset" for modeling experiments. Equation (17) outlines the moving average: 

𝑆𝑆𝑀𝑀𝐴𝐴𝑡𝑡 = 𝑃𝑃1+𝑃𝑃2+⋯+𝑃𝑃𝑛𝑛
𝑓𝑓

         (17) 
Table 3 statistical summary of engine operation cycle in training data set and test data set 

 Mean Std Min 50% Max 

Training 206.31 46.34 128 199 362 

Test 75.52 41.76 7 86 145 

3.3.2 Preparation for model establishment 
To construct the prediction model, it is vital to establish the classification label for the binary 

classification problem. This paper employs binary labels 0 and 1, based on RUL (Remaining Useful 
Life). If RUL is greater than 30, the label is 0; otherwise, it is 1. This label serves as the basis for 
interpreting the accuracy of subsequent training. 
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3.4 Experimental setup 
3.4.1 Experimental contents 

In this experiment, the "plus data set" obtained after data processing is used. The experiment is 
divided into two stages. In the first stage, the classification calculation of single models, namely K-
Nearest Neighbor (KNN) and AdaBoost, is performed separately. The optimal parameters of each 
model are determined through cross-validation and grid search. The best accuracy of each single 
model is obtained after superparameter optimization. In the second stage, stacking ensemble learning 
is used to further improve the accuracy and robustness of the aeroengine prediction. KNN and 
AdaBoost are used as base learners, and XGBoost is used as the meta learner. 

In this experiment, hyperparameter optimization is carried out using grid search and cross-
validation (GridSearchCV). Grid search is an exhaustive search method, where parameters are 
adjusted within a specified range according to certain steps to find the best parameters with the highest 
accuracy on the validation set. K-fold cross-validation is used, where the data set is randomly divided 
into k subsets with the same number of data, and each time k-1 subsets are used as the training set 
and the remaining subset as the test set. The validation is repeated k times, and the average accuracy 
is used as the evaluation metric for the model. Figure 5 shows a schematic diagram of k-fold cross-
validation segmentation. In this paper, we use the method of balancing data sets, where k = 5. 

 
Fig.5 Schematic diagram of cross validation segmentation 

3.4.2 Experimental results and analysis 
This study employs two metrics to assess the efficacy of the model, specifically, accuracy (ACC) 

and standard deviation (STD), as per equations (18) and (15). A model with superior performance is 
characterized by higher ACC and lower STD values. Moreover, the present paper provides a more 
lucid representation of the model's predictive capacity via the confusion matrix. 

 𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁
𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃+𝐹𝐹𝑁𝑁

          (18) 
In the single-model experiment, following the grid search hyperparameter optimization, the KNN 

algorithm's optimal parameters are: 
{'n_neighbors': 61, 'weights': 'uniform'} 
While the AdaBoost algorithm's optimal parameters are: 
{'learning_rate': 4.3, 'n_estimators': 119} 
Figure 6 and Figure 7 depict the confusion matrices of the KNN and AdaBoost models, 

respectively, after hyperparameter optimization. 

 
Fig.6 confusion matrix of KNN model after superparametric optimization 
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Fig.7 confusion matrix of AdaBoost model after superparametric optimization 

Table 4 demonstrates that stacking integration learning has significantly enhanced the ACC, 
improving accuracy to 0.9591, while concurrently reducing STD to 0.0074, thereby indicating further 
improvement in robustness. 

Table 4 test results of different learning models 
 KNN AdaBoost Stacking-based 

ACC 0.9501 0.9190 0.9591 
STD 0.0084 0.0084 0.0074 

4. Conclusion 
This paper presents an integrated learning model based on stacking, incorporating hyperparameter 

optimization using grid search and cross-validation to enhance the accuracy of the base learner 
involved in the fusion. The resulting model employs XGBoost as the meta-learner for fault detection 
in aeroengines, offering a high-accuracy and robust detection method without mathematical modeling. 
The main conclusions are as follows:  

(1) In data processing, the parameters {st3, s1, s2, s5, s6, s8, s10, s13, s16, s18, s19} are removed 
based on standard deviation and variation coefficient to reduce dimensionality. Moving average and 
rolling standard deviation are subsequently added in the last 10 operating cycles of the sensor to 
prevent overfitting. 

(2) By employing grid search and cross-validation, the optimal parameters for a single model are 
obtained, leading to improved prediction performance. 

(3) To address the shortcomings of low accuracy and high discreteness of a single model, stacking-
based ensemble learning is used to integrate hyperparameter-optimized models of KNN and 
AdaBoost, further enhancing prediction performance. The resulting prediction accuracy of 0.9591 is 
significantly higher than the maximum value of 0.9501 for a single model. The prediction standard 
deviation of 0.0074 is also lower than 0.0084 of a single model, establishing the reliability of the 
ensemble learning model's prediction results. 
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