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Abstract. Mainlobe dense false target jamming has brought great challenges to current radar
detection due to its multi-dimensional flexible modulation capability. To this end, many effective
solutions have been proposed in recent years. However, the performance of most existing methods
will be largely affected in strong noise environment. In actual scenarios, strong noise environments
are unavoidable. To solve this problem, this paper proposes a mainlobe dense false target jamming
identification method for strong noise environments based on two-dimensional (2D) sparse
recovery. First, the angle and time-delay parameters of the pulse are extracted by 2D sparse
recovery. Then, the jamming identification is completed using the space-time joint feature difference
within a single pulse repetition interval (PRI). On this basis, we also provide a jamming
reconstruction and cancellation scheme for strong jamming environments. Compared with existing
methods, the proposed method achieves accurate identification and suppression of jamming within
a single PRI by effectively utilizing the spatial information of the source. It exhibits excellent
robustness to strong noise and jamming environments. Additionally, it has the advantage of
significantly reducing computational costs, thereby increasing overall efficiency and practicality.
Numerical simulation experiment results verify the effectiveness of the proposed method.

Keywords: Electronic warfare; array signal processing; interference suppression.

1. Introduction

As is well known, radar jamming and anti-jamming are the relationship between spear and shield,
and the two restrict and promote each other [1]-[3]. According to the incident direction of jamming,
the radar jamming can be classified into sidelobe jamming and mainlobe jamming. For sidelobe
jamming, there are some mature processing methods, such as sidelobe cancellers (SLC) [4]-[6],
sidelobe blankers (SLB) [7] and ultralow side-lobe[8], [9].

However, the current countermeasures for mainlobe jamming are not yet mature. Especially
when certain forms of jamming are incident from the mainlobe, the target detection will be more
difficult. For example, when the digital radio frequency memory (DRFM) operates in full-pulse
storage mode, it can densely forward intercepted radar pulse within a single PRI. This is called
dense false target jamming. Jamming pulses after time-delay or frequency modulation can produce
a large number of false targets similar to the target signal at the radar receiver, and the effects of
deceptive jamming and blanket jamming can be presented at the same time. When this kind of
jamming is incident from the mainlobe, it is also difficult to distinguish in the angle dimension.
Therefore, the mainlobe dense false target jamming poses serious challenges to radar detection,
such as increasing the false alarm rate, losing track of real targets, and adding extremely heavy
computational burden. For this reason, the researchers today have proposed a series of
countermeasures such as pulse diversity [10], [11], blind source separation [12], [13], polarization
character [14], [15], and frequency diverse array [16], [17]. Especially, the algorithm of
distinguishing real echo and mainlobe jamming based on sparse reconstruction has received
extensive attention.

Compared with the traditional algorithms, the sparse reconstruction algorithm im-proves the
performance of object detection and angle estimation. Basis tracking (BP) is ap-plied to reconstruct
the space-time characteristic of the target echo in [18]. Zhou combined sparse Bayesian (SBL) and
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spatial adaptive processing to recover target parameters [19]. Chen applied the joint approximation
diagonalization of eigenmatrices (JADE) to separate jamming components, and then used SBL to
reconstruct target pulses with high accuracy [20]. In [21], the jamming power is reconstructed by
compressive sensing by prior information, and the characteristic oblique projection matrix is
constructed to eliminate the jamming component. However, the current algorithms based on sparse
recovery exist the following two problems: In practical engineering scenarios, the impact of noise
cannot be ignored. It is difficult for existing algorithms to accurately reconstruct target pulses in
strong noise. In addition, it is difficult to distinguish mainlobe jamming from real target only at the
spatial domain. To obtain the parameter differences between target and jamming at multiple
domains, it is usually necessary to reconstruct 2D sparse model. And the mainstream approach is to
convert the 2D sparse model into a 1D model through Kron-ecker product, which leads to large
amount of computational cost [18].

Aiming at solving the computationally intensive problem of 2D sparse model, Mohimani
proposed the smoothed [/, norm (SLO) algorithm which can be processed in re-al-time [22];

Ghafari extended the algorithm to the 2D case in [23] and state a uniqueness constraint for this class
of decomposition; In [24], Zhang studied the off-grid 2D sparse model based on first-order Taylor
expansion, and proposed Joint-2D-SLO to solve the grid mismatch problem. However, the recovery
effect of the above methods will be largely impacted in noisy environments.

Aiming at solving the poor robustness of existing sparse recovery algorithms, Bu proposed a
robust SLO algorithm (ReSLO) with one regularization parameter based on SLO in [25]; Hu
proposed a robust joint-block sparse recovery method in [26] which is also ap-plied to MIMO radar
imaging and achieves good results, but the regularization parameter needs to be selected according
to the noise intensity [23]; Chen discussed an adaptive solution of the regularization parameter in
[27] to improve the robustness of sparse solution in noisy environment, but the final regularization
parameter sometimes cannot converge to a suitable magnitude. To solve it , Lu proposed a robust
co-location MIMO radar target detection method based on the 2D block sparsity of the target in the
range-Doppler profile [28], but the method only works in the special case where the dictionary
matrix is orthonormal, and the initial value of the regularization parameter needs to be preset.

To conclude, there is still a need for a method that can accurately and quickly per-form sparse
decomposition of the 2D model in a noisy environment. Therefore, this paper proposes a 2D robust
smoothed /, norm algorithm (2D-RSLO0) with one adaptive regularization parameter, and applies it

to SIMO radar mainlobe dense false target jamming identification. Compared with the traditional
methods, the proposed method directly de-composes the 2D sparse model, avoiding the high
computational complexity caused by the Kronecker product; through the well-designed
regularization parameter update approach, the robustness of the algorithm under strong noise can
also be improved. In addition, for scenarios with strong jamming energy, it is difficult to accurately
extract the target parameters from the restored angle-time plane. We adapt the least-squares (LS)
solution to estimate the jamming intensity to reconstruct jamming pulses. After jamming
cancellation, the range unit of the target can be accurately identified on the range profile obtained
by pulse compression (PC).

The structure of the paper is organized as follows. In Section II, the array signal model is
introduced. Subsequently, in Section III, a mainlobe dense false target jamming identification and
suppression method based on 2D sparse recovery is proposed. In addition, the selection of the
adaptive regularization parameter and the complexity analysis of the algorithm are discussed in
Section III. Numerical simulation experiment results are presented in Section IV. Finally, Section V
presents some conclusions and discuss future work.

2. Signal Model

Consider an L element uniform linear array composed of omnidirectional antennas, the
distance between the element spacing is d , assuming that there are U narrowband signals
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incident on the array in the spatial domain, and the distance between the signal and array satisfies
the far field condition, the array receiving samples of the #" snapshot can be expressed as:

x(1) = As(r)+n(1) (1)
where A:[a(@l),a(ez),--~,a(9U)] represents the array manifold, 6, represents the incident
j2dsing, j2md(L-1)sing, T
angle of the u™ signal. a(@ll)z[l,e Aooeee A :I is the steering vector of 6,. s(r)

is the incident signal vector.
Assuming that the radar transmits a linear-frequency modulation (LFM) pulse, the transmitted
signal can be expressed as:

x(t)=rect (ij exp(jm/t2 +j27cf0t) )
T
where 7 isthe pulse width, y isthe chirp rate and f, is the carrier frequency. And:
0 L -05<¢<0.5 3)
rect(t)=
0, others

Suppose the echo signal s, (t) is from a moving target and has been down-converted, s, (t) can

be expressed as:
t—t,

Jexp(jﬂy(t—tr)2+j2ﬂfd (t—tr)) 4)

represents the echo delay, f, is the target’s

S, (t) = Aorect[

where A4, isthe complex amplitude of the target. ¢,

Doppler frequency. y represents the chirp rate. For brevity, the carrier frequency phase is omitted.

The jammer will continuously emit jamming signals after modulating the r signal, which will cause
the echo signal to produce multiple false targets after pulse compression. Without loss of generality,
taking time-delay modulation as an example, assuming that there are K jammers around the target.

The k"™ jammer intercepts the radar signal and then modulates the time-delay and produces O,

jamming pulses. The received jamming signal can be expressed as:
& t—t _ S
s ()= ZAquec{ ka Jexp(]m/(t ~t, ) +j2rf, (t ~t, )) (3)
g=1

where ¢ represents the time-delay of the g" jamming pulse forwarded by the k™ jammer, and

T

4,, represents the modulation amplitude of the jamming pulse.
For P snapshots from ¢# to f,, the array model can be obtained in a similar way:
X=AS+N (6)
S (tl),---,so (tP)

where S = : and N=[n(t]),---,n(tp)].

se ()85 (1)

It can be seen that the above formula is actually a multiple measurement vectors (MMYV) model. We
can design dictionary matrices for spatial domain and waveform domain respectively, and perform
sparse representation for A and S respectively.

Assuming that the source positions of interest are all concentrated in the angle area @ . By

A A

sampling © at equal intervals, the angle sequence [01,492,---,91‘4} with the number of elements

M is obtained, and their steering vectors forms the dictionary matrix in the spatial domain:
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(I)A:(a(él)oa(éz)a'“sa(éM)) (7)
According to the prior information, we assume that the echo centers of the target and all jamming
pulses are concentrated in [t t ] , then all echo data samples can be sampled

min ® “max
—7/2,t

sampling frequency. By sampling [t t ] at an interval of Ar , the time-delay sequence

min ® “max

infz,. +7/2]. The number of sampling snapshots is f; (¢, —¢,.. +7)+1, where f isthe

max max

[t,,tz,---,tN] is obtained, where ¢ =t . +(n—1)At . The smaller At is, the more accurate the

recovery effect is. Choose the function close to the target echo as the atom of waveform domain:

s, ()= rect(l _Tt" jexp(jﬂ}/(t —1, )2 +j2xf,(1—1, )) (8)

where fe [tmm —%,tmax +§} . The Doppler difference between the target and jamming was not

considered because the envelope change caused by this difference is very small in a single PRI
Therefore, a slight mismatch in Doppler does not affect the waveform characteristics. All the
time-delayed atoms form the dictionary in the waveform domain:

@ =[s.5,.5,] )
where s, =[s, (4),5,,(t),*5,,(t,) ] In thisway, A and s can be sparsely represented as:
A=, [a, 0,0, ] (10)
and
S=[1815ﬁ25""ﬂF]T(DST (ll)

where [a,,a,,--,a,| and [B.B,..B.]| represent the coefficient vector of @, and @

K
respectively. FF =1+ Z O, represents the number of received pulses.
k=1

Finally, the 2D sparse model of X can be expressed as:
B’

T
X=0, [a,a, o] ’8:2

@ +N (12)
B
It can be simplified to the following form:
X=0 H®,+N (13)
where @, =®, e C""” and ®,=®," cC"", HeC"" is the coefficient matrix. Equation (13)
is called the two-dimensional sparse model. Considering that the target and the jamming have only

a few strong scattering points in the joint dimension of spatial and time-delay, it is possible to
extract target parameters by using 2D sparse recovery.

3. The proposed method

In this section, a 2D robust smoothed /, norm based mainlobe repeater jamming identification

method is proposed. Especially, an adaptive solution method for the regularization parameter of 2D
model is proposed to improve the robustness of the algorithm to noise, thereby enhancing the
identification ability of radar to mainlobe repeater jamming in strong noise environment.
Subsequently, we proposed a jamming reconstruction and cancellation scheme to avoid the problem
of inaccurate target parameter estimation by 2D-RSL0 under strong jamming and strong noise.
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3.1 Basic principle of 2D-RSL0

The coefficient matrix H can be reconstructed by solving the following problem:
min |[H

in|], N
st|X-®H®,| <&

where ||||  1s the Frobenius norm. ¢ represents the noise level. However, the regularization of [

norm in (14) is an NP-hard problem, which makes it difficult to reconstruct H . As in [23], the
discontinuous /, norm can be approximated by introducing the Gaussian function family, and the

following Gaussian function G(h) can be used to measure the sparsity of the 2D sparse matrix:

h2
G(h)zexp(—2o_2] (15)
when o — 0, thereis G(h)= {g};lz (()) , so for sufficiently small & :
N ES
|H],, = MmN -limF, (H) (16)

M

where F, (H)= Ziexp [—

2
H, .

=1 j=1 20°
Therefore, (14) can be transformed into the following optimization problem:

max lim F, (H)
H -0 (17)
st [X-DH®,| <e

A small o results in multiple local maxima for F, (H), which makes it difficult to apply the

steepest descent method to find the global optimal solution. Fortunately, F (H) will smooth out

as o increases. Therefore, we design a nested loop, and adapt a large value of o at the
beginning of the external loop to avoid the iterative solution from falling into a local optimum . As
o decreases, F (H) will more accurately approximate the /, norm. The internal loop iterates a

small fixed value, which can be described as the following two steps: firstly, iteratively optimizes
the solution of the coefficient matrix through the steepest descent algorithm, then projects the
solution into the feasible set.

Remarkl : In the first step, the iterative form of the steepest descent method is:

H<«H+uVF, (H) (18)
where VF, (H) is the derivative of F, (H), which can be expressed as:
H, H, ’
VF_(H)=|-—exp| ——5 19
- (H) { = p[ 202J] (19)

The step size u, should be proportional to o’ [22], we choose a fixed constant z such that

U= 1o’ Then the iterative solution can be expressed as:

. H °
H«H-uH,, exp{— 2”3} (20)

o

Remark2 : The iterative solution H obtained by (20) does not satisfy the constraints of (17), so it
needs to be projected into the feasible set, which is equivalent to solve the following optimization
problem:
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min|H -

2
r 2D
st|®HD,-X| <&

A common solution to (21) is the Lagrange multiplier method [27], and the Lagrange form of (21)
is:

J()=[H-A] + 1| e, -X|; 22)

where A represents the regularization parameter, it is used to balance the sparsity and residual
fitting of H. The selection of A will be discussed in section 3.2.

The partial derivative of J (H) can be calculated by the following formula:
o[- (@m0, x)0n0,-x)']
oH oH oH
G[tr(fl)lHl(I)z ~X)(® H,0, —X)HJ » 6[tr((I)IHl(I)2 —X)(® H®,-X)" J
oH, oH,
=2(H-H)+24(0,"® HO,®," -,"X,")

(23)

=2(H-ﬁ)+/1

the following properties can be used to simplify the calculation of (23): When calculating the partial
derivative of J (H) to H, each occurrence of H can be regarded as a new variable, and each

result can be added.
oJ(H)

Let =0, we have:

BH+HC=D (24)
where B = [MI)IH(I)JT, C=0,0," and D= [MI)IH(I)JT [I:I+ A0 X(I)ZH} . ()" represents the
pseudo-inverse of the matrix.

Equation (24) is the Sylvester equation [29], and the analytical solution of (24) can be obtained by
the following formula:

VeC(H)=(IN®B+CT®IM)VCC(D) (25)
Bartels and Stewart proposed a fast solution to (24), and gave the restriction that (24) has a unique
solution [30].

3.2 Adaptive Selection of Regularization Parameter 4

The update of regularization parameter A directly affects the performance of 2D-RSLO. In this
section, we design an adaptive iterative method for the update of A . By introducing the
regularization parameter A , 2D-RSLO obtains stronger robustness than 2D-SLO. It can be seen
from (22) that the former term of J (H) is used to control the approximation of the solution to the

steepest descent solution, aiming to ensure the sparsity of the result. The latter term is the
regularization term that minimizes the residual. Therefore, an ideal A should balance the sparsity

. oJ (H)
and robustness of the solution, let a—H =0, we have:
(H-f)=-i(® "0 HO,0," -0 "X,") (26)
Taking the Frobenius norm on both sides of (26), then it should satisfy:
(-5
L 27)

B |®"® HO,0," @ "X0,"|
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The projected solution H in (27) is an unknown prior. The projected solution H,, ofthe —1”

loop is chosen as its replacement in [27], then A4 can be estimated by:

i _ H(H/—l _I:I) r 28)
D |efeH, @0, -0 X0,

However, it will bring the following two problems:
1. In general, large 1 corresponds to small o [25]. o is a large value under strong noise. For

the initial solution H,, the minimum norm solution with X =® H®, is generally selected as the
initial solution, which causes the denominator of (28) to be a very small value, resulting in the
initial solution A, being too large.

2. Since the projection solution H,_ ofthe j —1" external loop satisfies the following equation:

(0, -8, )+ (o'OoH, 00,"-0"XD,")=0 (29)

Equation (28) can be simplified to /’Atj = uj_lﬂ: where u,, is the iteration factor, and it can be

j-1°

U= ‘(H-Hi_l) N (0)
(1 -5)

where (I;I-HH) represents the variation of the gradient solution in the ;™ external loop,

expressed as:

F

(Hj_1 — ﬁj_l) represents the variation of the projection solution in the j—1" external loop. It can

be seen that 1 is not strictly decreasing.

The above two points make it difficult for 1 to converge to an appropriate order of magnitude.
Therefore, we give the following iterative formula:

H(H .-H)
- L (31)
‘d)lHq)lHd)z@ZH -0 X®,"

A

F

by replacing H,_ in the denominator with H , the problem of too large initial solution is solved.

Compared with H,_,, the new expression contains the gradient information of this loop, which is

closer to the estimated value of H . Therefore, the new )Cj is more accurate than the traditional

method.

3.3 Overall flowchart of 2D-RSL0

Finally, we propose the 2D-RSL0 algorithm with the adaptive iterative method for the update of
A, the flowchart is shown in Algorithm 1. By designing two nested loops, o is continuously

reduced in the external loop, and the residual error of F, (H) fitting the /, norm is reduced. In

the internal loop, calculate the optimal solution that satisfies the constraints under the current o
with a fixed number of iterations. Such a structure can quickly obtain an approximate solution to the
optimal solution in the early stage of the external loop, and the final sparse solution H can
effectively avoid many local optimal solutions when ¢ is small.

Algorithm 1 The Two-Dimensional Robust SLO Algorithm (2D-RSLO0)

Input: Received data X ; Dictionary ®@,,®D,.
Output: Recovered time-delay matrix H.
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Initialization
Let H,=®/'X(0,'®,) @, .
Select an appropriate descending sequence for o, [0', 10y O J] .
for j=1,2,....J
Let o=0,.
Let H=H
for ¢=1,2,...,G
Update regularization parameter A1
if g=1 then
Calculate 1 by (31)
end if
Maximize F, (H) using the steepest ascent algorithm:
Calculate VF, (H) by (19)
Calculate H=H+ uo’VF, (H)
Project H back onto the feasible set ||(I),H(I)2 - X||F <g:
Using Bartels—Stewart algorithm to calculate H by (24)
end for
Set H,=H
end for
H=H,
return H

3.4 Complexity Analysis of 2D-RSL0
The calculation load of 2D-RSLO is mainly concentrated on the step of calculating the projection
solution through (24). The complexity of [/Id)]H(I)l ]T is O(M *L+3M 3) , the complexity of

®,®," is 0(N2P) . The previous term of [/I(I)IH(I)IT [I:I +A@" X(I)2H] can be obtained when

calculating B , so the complexity can be reduced to O(M ‘tMPL+M 2P) . Using the

Bartels-Stewart algorithm, the complexity of solving the Sylwester equation can be reduced from
O(M°N*) to O(10M’+10N* +2.5M*N + 2.5MN”). For the nested loop given in Algorithm I,

it is necessary to solve the Sylwester equation JL times. Therefore, the total complexity of the
projection step is

O(14M°JG +10N’JG + 2M°LJG + M’ PJG + N’PJG +2.5M*NJG +2.5MN° JG) . [cpl“cplf and
®,®," can be precomputed outside the loop, o the total complexity can be reduced to
0(1 IM*JG+10N°JG+2.5M°NJG +M’LIG+M*PJG +2.5MN*JG+M’L+3M’> + NZP) .

For comparison, RKSLO is introduced here. By the Kronecker product and the random projection
matrix, (13) can also be transformed into a 1D sparse model and solved by ReSLO [27], which is
called the RKSLO method. Assuming that the random projection matrix has # rows, then the total

complexity of RKSLO is O(2W2MNJG +W3JG + 2WMNJG) . It can be seen that the complexity of

the proposed algorithm is significantly lower than that of RK-SLO. This is mainly because in order
to ensure the uniqueness of the sparse solution, the row dimension of the random projection matrix
must satisfy W > F'log LP , which makes the complexity of RK-SLO greatly improves.
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3.5 Jamming Reconstruction and Cancellation

The dense and strong jamming will cause the real target intensity recovered on the angle-time
plane to be weak, which brings difficulties to the parameter estimation of the real target and
seriously affects the detection and tracking of the real target. However, the recovered jamming
parameters by 2D-RSLO can be used to reconstruct the jamming pulses to cancel jamming
Assuming that there are W identified jamming pulses on the angle-time plane, in which the
steering vector and the waveform of the w—# jamming can be constructed as a* and s"
respectively. Then, the constructed jamming data can be expressed as:

X, =ﬁrwaw(sw)T (32)

where 7" represents the intensity of the w—th jamming pulse, and the unknown jamming
intensity vector can be defined as y = [rl,rz,...,rw] . It can be estimated by solving the following

least-squares problem:
Y= argmin”X— XJ”F
Y
4 T
vec(X— eraw (sw) ]

=arg min (33)
Y

w=1

2

=arg min Hvec (X)_ AYH2
Y

where A= [vec(al (s1 )T ), vec(a2 (s2 )T ) ..,vec (aW (sW )T )} . ||||2 represents the Euclidean norm.
Therefore, the jamming intensity vector y can be estimated as:
Y :(AHA)_1 Avec(X) (34)

On this basis all jamming pulses can be reconstructed. After jamming cancellation, the remaining
data X ,& can be expressed as:

X, =X-3 " (s) 69)
w=l

Finally, the range unit of the real target can be solved by traditional adaptive beam forming (DBF)
and PC. It should be noted that since the mainlobe jamming has been canceled, although the target
angle estimated by 2D-RSLO is not accurate enough, the MVDR or LCMV beamformer can still be
designed based on the estimated target angle to process X ..

4. Experiments

Consider a uniform line array with 32 omni-directional antennas. The array element spacing d
is half the wavelength [/ , and the 3dB beamwidth is 6,, =50.7] /Ld =3.1688° . The radar
transmits LFM signal with the bandwidth B =5MHz and the pulse width 7 =20us. The sampling
frequency is f, =10MHz, and the chirp rate is y = B/z . Assuming there is a moving target 30km

away from the radar in the direction of 0°, and the target speed is 300m /s . Three jamming
scenarios are considered, and the corresponding parameters are shown in Table 1, Table 2 and
Table 3 respectively. Assume that the direction of target is not known in advance, 6 . and 6__

are chosen as —10° and 10°. The angular interval is A@ =0.1°, so the number of atoms in the
)/A@+1. Similarly, ¢

0.2ms and 0.22ms . The time-delay interval is Af=0.2us , so the number of atoms in the

spatial domain dictionary is M =(0 -0

max min

and ¢ are chosen as

min
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time-delay domain dictionary is N =(¢,, —¢
=0.01,

are o, J =100, u=0.2, G=3 respectively. The parameter decay rate of o is set to

0.5.

4.1 Verification experiment in strong noise and jamming

In this section, we verify the effectiveness of the proposed method in strong noise and jamming.
The signal-noise-ratio (SNR) is set to —20dB . Fig. 1(a) shows the simulation of scenario 1. Fig.
1(b) shows the simulation of the received echo after pulse compression. It can be seen that in the
case of SNR =-20dB , the signal is still covered by noise after pulse compression, and it is
difficult to distinguish the target and jamming from numerous peaks.
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Fig. 1 (a) Received echo under noise (b) Received echo after pulse compression
In order to distinguish the target and jamming in scenario 1, we adapted 2D-SLO to reconstruct
the pulse parameters in strong noise environment. Fig. 2 shows the recovery results on the
angle-time plane and their projections on the two planes. It can be seen that the target and jamming

can be effectively identified according to the 2D information. The number of recovered pulses is
K =7 . The angle-time parameter of the pulses are [1.2°,0.200ms] , [1.2°,0.204ms] ,

[1.20,0.207ms],[1.2°,0.210ms], [1.2°,0.213ms],[l.2°,0.216ms]and [1.2°,0.219ms] respectively.

Since the jamming pulses emitted by the same jammer have the same angle, we can distinguish the
target from jammer in this way. From Fig. 2, it can be easily and clearly determined that the target’s
incident angle is 0°.And six jamming pulses from the same jammer incident from 1.2° can be
identified. It should be emphasized that the target direction is not the direction of the first pulse
received in the time domain, it is determined by the direction of only one pulse. The angle and
time-delay information of the pulse should be referenced simultaneously to determine the true target
pulse.

22
%10

1.9 2 05 2.2

%10

Table 1. Parameter Settings of Scenario |

Type Angle(®) Time-delay( ps ) JSR(dB)
Pulse 1 1.2 4 3
Pulse 2 1.2 7 3
Jammer 1 Pulse 3 1.2 10 3
Pulse 4 1.2 13 3
Pulse 5 1.2 16 3
Pulse 6 1.2 19 3
Table 2. Parameter Settings of Scenario 2
Type Angle(®) Time-delay( us ) JSR(dB)
Pulse 1 -1 10 3
Jammer 1 Pulse 2 -1 13 3
Pulse 1 -1 16 3
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Pulse 2 1 1 3
Jammer 2 Pulse 1 1 3 3
Pulse 2 1 5 3
Table 3. Parameter Settings of Scenario 3
Angle(®) Time-delay( s ) JSR(dB)
Pulse 1 -1 10 15
Jammer 1 Pulse 2 -1 13 15
Pulse 1 -1 16 15
Pulse 2 1 1 15
Jammer 2 Pulse 1 1 3 15
Pulse 2 1 5 15
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Fig. 2 Recovery results of scenario 1: (a) Angle-time recovery of pulses (b) Top view (c) Time
plane projection (d) Angle plane projection

Fig. 3 shows the corresponding experimental results of scenario 2. In this scenario, the angle
plane projection shows that the target is covered by the jamming, but the target and the jamming are
separable in the time plane projection, so that the target and the jamming can be effectively
identified. On the sparse recovery plane of a single PRI, the true target appears only as a single peak
that is independent and not modulated by time delay. In contrast, the number of jamming peaks is
equal to the number of false targets generated by the two jammers, and all of these false target
peaks are located behind the real targets. It is worth noting that all false target peaks generated by
the same jammer have the same angle parameters. This layout clearly differentiates between real
targets and false targets created by jammers. The distinguishing feature of the real target is that it is
a single peak, while the false targets can be identified by their consistent angular parameters and

posterior position relative to the real target. The target is incident from 0° . [—1°,0.210ms] ,

[—1°,O.213ms] and [—1°,0.216ms] are the three pulses emitted by jammer 1, [1°,0.201ms] ,

[1°,0.203ms] and [1°,0.205ms] are the three pulses emitted by jammer 2.
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In Fig.4, we analyze the effect of two-dimensional sparse recovery and jamming cancellation in
strong jamming scenarios. It can be observed from Fig.4a and Fig.4b that when the jamming is too
strong, the representation of the target on the plane appears very weak. In this case, the parameter
estimates of the target are often imprecise. However, the parameter estimation of the jamming

signal still maintains a high accuracy, so the jamming waveform can be reliably reconstructed. In 4c,
based
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Fig. 3 Recovery results of scenario 2: (a) Angle-time recovery of pulses (b) Top view (c) Time
plane projection (d) Angle plane projection
on the estimated jamming parameters, the jamming signal is accurately reconstructed and
effectively eliminated. After eliminating jamming, the peak profile of the target becomes clearly
discernible on the two-dimensional plane. Although there may still be certain errors in the
parameter estimation of the target at this time, the pulse compression results after jamming
elimination in Fig.4d can be referred to assist in judging the real target and further determine the
two-dimensional parameters of the target. The jamming data is reconstructed using the restored
jamming parameters.
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4.2 Performance analysis of proposed 2D-RSL0

In this section, we compare the performance of the proposed 2D-RSLO with RKBP [18] and
RKSLO.

4.2.1 Performance comparison under different SNR

Fig. 5 shows the angle-time plane recovery results of the three methods under different SNR. It
can be seen that when the noise intensity is low, all methods can effectively reconstruct the pulse
parameters and distinguish the target from the jammer. And the pulse normalized amplitude
reconstructed by the proposed method is more accurate than RKBP and RMSL0. However, in the
case of SNR <0dB , the performance of RKBP and RKSLO decreases rapidly. Many spurious
peaks are produced in the reconstruction results, which seriously affect the discrimination of the
target and jamming. This is mainly because the random projection changes the intensity of the noise.
The proposed method can effectively reconstruct pulse parameters under all four noise intensities,
especially when SNR =-20dB , the proposed method can still accurately reconstruct the pulse
parameters which proves that the robustness of the proposed method to noise. The performance
improvement of the proposed method is thanks to the consideration of 2D sparsity and the adaptive
regularization method in the iterations.

4.2.2  Analysis of the impact of low SNR using RMSE

In Fig. 6, we give the comparison of the three methods’ RMSE versus SNR, where RMSE is
defined as:

2

1 Tyc 1 -
RMSE = \/ KT > > (6,-6,) (36)

t=1 k=1
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Fig. 5 Comparison of angle-time recovery results under different SNR

where 6, represents the DOA estimation of the #” Monte Carlo experiment on the k" pulse,

and 6, is the real angle of the k" pulse. Carry out T7,,. =100 Monte Carlo experiments. It can

be seen that the three methods can effectively distinguish the target and jamming when
SNR > 5dB . The RMSE of the three methods decreases as the SNR increases, and the proposed
method’s RMSE is significantly lower than RKBP and RKSLO when SNR =-20dB, which means
higher accurate parameter estimation accuracy. This is mainly because the introduction of the
projection matrix reduces the robustness of RKBP and RKSLO.

35
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Fig. 6 RMSE versus SNR
4.2.3 Analysis of the impact of the angle between target and jamming using RMSE
In Fig. 7 we analyze the impact of angle between target and jamming using RMSE. It can be seen
that the RMSE increases as the angle decreases, which means that the angle estimation of the pulse
deviates farther from the true value. When the pulse angle interval is 0.3", which is one-tenth of the

3dB beamwidth, the RMSE of the proposed method is reduced to within 0.1", which verifies the
high-precision angle estimation capability of the proposed method.
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Fig. 7 RMSE versus angle interval

4.2.4 Analysis of the impact of Y using RMSE

In order to study the impact of the number of external loops J on the reconstruction
performance, we set J as 25, 50, 75, 100, 125, and 150 respectively. Fig. 8 shows the results
under different values of J . It can be seen that with the increase of .J, the RMSE of the proposed
method gradually decreases, but when J increases to a certain level, the estimation accuracy
basically remains the same. A higher value of J brings more computational cost. Therefore, in
practical applications, the appropriate value of J should strike a balance between computational
complexity and reconstruction accuracy.
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Fig. 8 RMSE versus numbers of external loops J

4.2.5 Analysis of the impact of dictionary atom number using CPU cost time

Fig.9 shows the effect of dictionary atom number using CPU cost time. We set the number of
atoms in the angle dictionary and time-delay dictionary to be the same, varying from 50 to 100, and
the CPU cost time of the proposed method is significantly shorter than that of RKBP and RKSLO.
This is because the two methods straighten two-dimensional data into one-dimensional vector
processing, which significantly increases the dimen-sionality of the sample. Although it is possible
to reduce the dimensionality of the vector in the way of random projection matrix to reduce the
operation cost. However, this reduc-es the robustness of RKBP and RKSLO to noise, and in order to
ensure the stability of sparse solutions, there is a lower limit to the dimensionality reduction of the
data.

250
—e—RKBP
e RKSLO

200|--%-2D-RSLO

x

N T AT

50 5 60 6 70 75 80 85 60 100

Discretizing number of angles and time delays

Fig. 9 CPU time versus dictionary atoms

4.3 Performance analysis of target detection

In this section, we analyze the performance of the target detection. Through 100 Monte Carlo
experiments, Figure 10 shows the detection probability of Scenario 1 and Scenario 2 under different
SNR and jamming-signal-ratio (JSR). It can be seen that when SNR > -20dB , the target detection
probabilities in both scenarios are higher than 90%, and the proposed method performs well under
the influence of different jamming intensities. When SNR <-20dB , the target detection
probabilities in both scenarios declined to a certain extent. Too strong noise affects the accurate
extraction of jamming parameters, resulting in inaccurate calculation of jamming intensity.
Therefore, the residual jamming cannot be ignored. Taken together, the detection probability is
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relatively the highest when JSR =12dB , which indicates that the residual jamming energy is
relatively the lowest. In addition, since the jamming distribution of scenario 2 is more complex than
that of scenario 1, the recovered jamming parameters are more inaccurate, and the corresponding
target detection probability is also slightly lower.

Detection probability
c s o
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—»—SNR=-25dB

Detection probability
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—+—SNR=-25dB
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Fig. 10 Detection probability versus JSR: (a) Scenario 1 (b) Scenario2

5. Conclusion

This paper addresses the issue of insufficient robustness and high computational complexity in
the existing mainlobe dense false target jamming identification method under strong noise and
jamming background. Compared with the existing methods, by introducing a regularization
parameter to adaptively adjust the sparse solution, the proposed method is robust to strong noise
environment. Through jamming reconstruction and cancellation based on LS, the proposed method
is robust to strong jamming environment. What’s more, the method significantly reduces the
computational cost by directly decomposing the 2D sparse model. Experiment results show that the
proposed method is superior to RKBP and RKSLO in both accuracy and calculation speed. In
addition, even in the case of SNR =-20dB and JSR =20dB , the proposed method can
accurately identify the mainlobe dense false target jamming and extract the real target range unit. It
is worth mentioning that when DRFM performs time-delay modulation and frequency modulation
on the mainlobe jamming pulse at the same time, it is difficult for this method to estimate more than
two pulse parameters, which will be the focus of future research.
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