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Abstract. Falls constitute a significant health risk, particularly among the elderly, thus prompting the
introduction of various wearable devices capable of fall detection. However, the majority of these
devices prioritize accuracy over wearer comfort, which significantly influences user adherence and,
by extension, the broader development of wearable technologies. Addressing this oversight, this
review first summarizes the current methods for predicting the comfort of wearable devices,
evaluating them in terms of feasibility and accuracy, reliability and effectiveness, as well as safety
and privacy. Subsequently, building upon the evaluation of existing methods, this review proposes a
predictive solution based on the XGBoost algorithm.
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1. Introduction

Falls represent a sudden, unintended descent to the ground and pose a significant health hazard,
notably among the elderly. Statistics reveal that approximately 30% of individuals aged 65 and over
residing in communities experience falls annually [1][2]. Globally, falls are the predominant cause
of accidental injuries and fatalities in seniors and the second leading cause of accidental death[3].
These issues underscore the necessity for reliable fall detection systems in real-world scenarios.
Prevailing research highlights several mainstream methodologies for fall detection, including
intelligent cameras [4][5] and wireless sensors [6][7]. However, such technologies are often
impractical in private spaces (like bathrooms), posing significant installation challenges and privacy
concerns. These limitations highlight the appeal of wearable detection systems as an optimal
solution, evidenced by their growing popularity [8][9].

Recent years have witnessed a surge in wearable device research, concentrating primarily on the
devices' fall detection accuracy. Most studies have assessed comfort through questionnaire surveys,
theoretical data, or fabricated wearable devices. We contend that questionnaire surveys and other
methods may introduce uncertainties and objective factors that can influence survey results,
potentially leading to unreliable final collected data. Therefore, this review summarizes the current
research progress and proposes more suitable prediction methods based on this foundation

This review is structured as follows: Section II overviews current research, achievements, and
gaps within related works. Section III details the design the future solutions for comfort centered
ensemble learning algorithms. The concluding section encapsulates the article's primary
contributions, and potential avenues for future exploration.

2. Comfort Prediction Method
2.1 Current Algorithm Analysis

The realm of wearable technology has witnessed substantial growth, evolving rapidly to
encompass a broader range of functions including human recognition and health monitoring. This
expansion has propelled their usage in diverse sectors, notably in healthcare, military, and industrial
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spheres. One significant application emerging amidst the healthcare concerns of today is fall
monitoring, necessitated by the prevalent health risks associated with falls.

Advancements in sensing technologies—accelerometers, gyroscopes, and infrared sensors, to
name a few—have enhanced these devices' capabilities in human posture recognition. Furthermore,
the refinement of machine learning algorithms, including K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost), has been integral in
minimizing both false negatives and false positives. This progress aims not only to boost the
accuracy of wearable devices but also to address user comfort, ensuring the devices are lightweight
and convenient, thereby fostering broader acceptance and adherence, especially in fall monitoring
scenarios.

In contemporary society, wearable devices are garnering popularity across various everyday
applications, from healthcare to education. A survey of existing machine learning algorithms
employed in these contexts reveals impressive efficacy, with accuracy rates in experimental setups
generally ranging from 90% to 99%. Specific studies[10][11], such as those by Chandak, have
introduced novel fall detection methodologies, leveraging sensor placements on experimenters'
wrists and pockets and utilizing diverse machine learning models, including SVM, Random Forest
(RF), Multilayer Perceptron (MLP), and One-Dimensional Convolutional Neural Network (1D
CNN). These studies have consistently reported accuracy surpassing 93%.

Presently, these fall monitoring systems offer significant promise in elderly care, providing
robust tools to mitigate the dangers of falls and subsequently enhancing the quality of life for older
adults and other at-risk demographics. Anticipated technological advancements are expected to
further diminish fall-related risks, ushering in safer living environments and spearheading
innovation in this health sector[12].

This realization underscores the necessity for a more nuanced approach in wearable design,
factoring in both the quantity and placement of devices to enhance overall wearability[13].
Ergonomic considerations and social acceptability also emerge as crucial elements in this discourse,
potentially serving as catalysts in advancing wearability research[14].

Despite the availability of commercial fall detection units, their practical effectiveness has been
underwhelming, plagued by issues of high false alarm rates, exorbitant initial and upkeep costs, and
lack of ergonomic design. Researchers have highlighted these challenges, emphasizing that the
discomfort associated with wearing these devices significantly deters usage among elderly
individuals[15]. Consequently, enhancing wearability—encompassing comfort, scalability, and
flexibility—has emerged as a research priority in this domain.

However, a gap in the research landscape is apparent: studies seldom address the interplay
between the comfort and accuracy of wearable devices. The focus predominantly remains on
precision, often overshadowing the importance of user comfort during wear. Investigations into user
comfort have been largely observational, centering on wearers' physical responses to the device's
positioning[16][17]. Certain insights suggest that devices positioned near the body's center of
gravity, such as at the waist, strike a balance between accuracy and comfort[11][18]. Nonetheless,
the societal tendency, particularly among the elderly, veers towards minimal reliance on
technologically advanced wearables, attributable perhaps to the discomfort or unfamiliarity they
engender.

In summary, as wearable technology continues to advance, its applications are broadening,
marked by increased sophistication. The comfort prediction methods for the major wearable devices
are shown in Table 1.This is particularly evident in the field of fall monitoring, where the evolution
of device accuracy and user comfort is ongoing. Nevertheless, achieving the optimal balance
between these aspects necessitates further exploration, inviting comprehensive strategies that
consider ergonomics, user preference, and social acceptability in the quest to elevate wearable
device comfort.
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Table. 1 Summary of comfort prediction methods for major wearable devices
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2.2 XGBoost Algorithm Assessment
(1) Feasibility and accuracy of XGBoost algorithm

XGBoost is a highly optimized, distributed gradient-boosting library crafted for efficiency,
flexibility, and portability. It embodies an extensible tree-boosting algorithm that accelerates model
training and enhances efficiency, swiftly and precisely addressing a multitude of data science
challenges. The applicability of XGBoost across various domains, including medical diagnosis and
network security, has been substantiated by numerous studies [21][22]. Particularly, reference [23]
attests to XGBoost's remarkable predictive accuracy, showcasing its superior performance and
precision across diverse datasets. Moreover, it offers considerable interpretability and scalability.

(2) Effectiveness of comfort parameters

This study successfully analyzed accelerations at various points on the body, including the front
of the waist, wrists, soles of the feet, and knees, utilizing them as inputs [23]. Uniquely, this article
suggests the incorporation of comfort-related parameters for input analysis. These parameters
encompass device appearance, device size, the coordinates of the device's wearing position, device
weight, and device material. Due to the fact that these five comfort parameters can to some extent
affect body acceleration, and these factors are intrinsically tied to acceleration and remain critical
indicators in pertinent research, the use of comfort parameters as inputs is deemed compatible with
the overarching algorithmic model design, effectively facilitating comfort research.

(3) Reliability of investigation experiments

In this study, we opted for an experimental approach to gather comfort-related data. This method,
compared to traditional questionnaire surveys, enables direct observation and quantification of
participants' physiological and behavioral responses under defined conditions, yielding data that is
both more precise and objective. A further merit of the experimental method is its capacity to
control human factors' influence, thereby diminishing biases in experimental outcomes and
guaranteeing the reliability of the data collected. Consequently, it can be utilized with greater
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confidence for subsequent analyses and decision-making processes. However, due to the lack of
related dataset, it is not feasible to conduct the actual experiment.

(4) Investigating experimental security and privacy

In this article, data acquisition occurs through investigative experiments. Consequently, to
encourage broader participation and effectively build trust, it's imperative to guarantee the
confidentiality of participants' personal details (such as age, gender, etc.), safeguarding their privacy
— a moral and legal imperative. Simultaneously, participants will be briefed on the experiment's
purpose, along with the nature and significance of this study, to foster deeper trust. Additionally,
pertinent institutions will scrutinize the experiment, ensuring its security and privacy measures are
robust. As such, this investigative experiment maintains a level of security and poses no privacy
threats to the participants.

3. Future Direction for Comfort Prediction Method of Wearable Devices

For future directions, we could augment the investigation duration and participant count —for
instance, extending the study period to a week and increasing the participants to 500—to bolster the
data's reliability.

Except refining survey experiments, XGBoost's predictive prowess can be extended to ascertain
the significance of the comfort parameters discussed in this study, in tandem with rigorous survey
experiments, to further validate the precision and dependability of these parameters' weight values.

In addition, adjusting the weights of algorithm parameters might enhance the algorithm's
predictive accuracy, fortifying the reliability and precision of the forecasts.

4. Conclusions

In this review, we evaluated existing comfort research methods, summarized the current methods
for predicting the comfort of wearable devices, and proposed a future direction based on the
XGBoost algorithm. The future direction we suggests is enhancing research reliability by extending
the study period to longer time with more participants, ascertaining the significance of the comfort
parameters and adjusting the weights of algorithm parameters.
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