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Abstract. For optimization problems minimizing the sum of two nonconvex and nonsmooth
functions, we propose an alternate linearization method with inexact data. In many practical
optimization applications, only the inexact information of the function can be obtained. The core
idea of this method is to add a quadratic function term to the nonconvex function(called local
convexification of nonconvex function), and then to construct an approximate proximal point model.
In each iteration, a series of iteration points are obtained by solving subproblems alternately. It can
be proved that, in the sense of inexact oracles, these iteration points converge to the stable point of
the original problem, and theoretically show that the algorithm has good convergent properties.
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1. Introduction
In this paper, we consider an unconstrained nonsmooth optimization problem in the following

form:
( ) min ( ) : ( ) ( )

ny
P y y y 


  


, (1)

where the functions : n   and : n   are prox-regular Lipschitz, not necessarily
convex or smooth. Suppose that we can compute the proximal point of  and  more easily or
less costly than to solve the problem (P) directly.

We utilize the new notion of computing the proximal point algorithm of nonconvex functions,
especially the prox-bounded lower- 2C , and design the alternating linearization scheme with inexact
information for working out the sum of nonconvex nonsmooth functions. The important step is to
build up the approximate proximal point model, which is mainly split into the following three steps:

1. according to the property of the lower- 2C function, add the corresponding proper proximal
terms whose center is the current iteration point to convexify the function  and  , respectively;

2. keep one convexified function fixed and make the other convexified one linearized at the
iteration point;

3. the oracle outputs an approximative function value at each iteration point, and the error of
function values changes with iteration.

On account of the property of the lower- 2C function, combined with the feature of proximal
point mapping, the executable inexact alternate linearization approach, which decomposes the
original problem into two different convex approximate subproblems, is proposed. For the sake of
getting over the difficulty of obtaining the exact information about the function values and gradients
in the practical optimization problem, we use the values of the function with certain errors in the
construction of the approximate model. In each iteration, the proximal point of the approximate
model needs to be calculated alternately. Moreover, the parameters and errors are updated in the
light of explicit measure. We also proved that the method owns great properties of convergence
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from a theoretical point of view.

In essence, we propose a new approximate proximal point approach that adds inexact data into
the alternating linearization algorithm. This can be considered as extending the algorithm, initially
only applicable to convex optimization, to nonconvex case. As a result, this illustrates that our
proposed algorithm is more widespread. On the other hand, traditional linearization constructions or
cutting plane models are straightly formed from the values of the function and subgradients at a
given point, where the exact oracle can obtain. However, in the nonconvex case, the linearization
error of these schemes may be negative and even cut off some regions containing local optimal
solutions, so it is challenging to guarantee convergence of the approach. But we can eliminate the
negative linearization error of the approximate model by locally convexifying the original problem,
respectively, which is another strength of our method.

The framework of the paper is as follows. In Section 2, we states the core idea and concrete form
of the approximate model construction in the nonconvex case and presents an executable inexact
alternating linearization approach. In Section 3, the convergence analysis of the algorithm is
provided to validate the effectiveness of the algorithm. In Section 4, we our present conclusions.

2. A proximal alternating linearization approach with inexact information
In this section, we give an implementable approach to solve the problem (P) and state the major

idea of forming approximate proximal points in the nonconvex setting.
We assume that for an accuracy tolerance 0k  , at each point k ny  the oracle delivers an

approximate value
^
( )ky of f . This ensures that the inexact and exact function values meet the

following relationship:
^
( ) ( ) , ( )k k k

ky y y       . (2)

Similarly, approximate value
^
( )ky satisfies:

^
( ) ( ) , ( )k k k

ky y y       . (3)
For simplicity, we denote

21argmin ( )
2

k k k
ky

u y y y      
 

,
2+1

+1
1argmin ( )
2

k k k
ky

u y y y      
 

.

Considering the k th iteration point as ky and using the equivalent form of lower- 2C functions,

two lower approximations for the function
21( )

2
ky y y   can be built as follows:

^2 21 1 1 1 1 1 11 1( ) ( ) ( ) ( ),
2 2

k k k k k k k k k k k ky y y y u u y g u y y u                             ,

^ 2 21 1 11 1( ) ( ) ( ), ( )
2 2

k k k k k k k k k k k ky u u y g u y y u y y y                         ,

where 1 1( )k kg u   and ( )k kg u  .
Obviously, the two approximate models discussed above stand for the sum of a convex function

and an affine function. Therefore, based on the property, we can prove that when the parameters
meet conditions, the constructed model can satisfy the properties of (a)-(d) in [1], which plays an
important role in our subsequent proof of the algorithms convergence.

Lemma 2.1. In the context of 1 0k
 


   , 0k

 


  and mink  , the proximal point of
k
 at ky is indicated by the sequence  ku . Furthermore, the following item hold:
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(i) k
 is a convex function, with the Lipschitz continuity on ( )kB y



;

(ii)    k k ky y   ;

(iii) ( ) ( ) ,k k k k k k
ky u y u y u y          ， ;

Proof. These results resemble Lemma 2.4 in [2] and are easily proved similar to it.

In the algorithm, we define the following linearization error:
( ) ( )k k k

ke y u    .
The linearization error is made sure of nonnegativity by the convexity of the approximate model

k
 , which is proved the convergence of our algorithm significantly. Besides, our elementary work

is to prove that 0ke  is the criterion of implementable stopping. In addition, prior to the steps of
the algorithm being listed, we make assumptions about the constants that can be achieved in the
algorithm.

Assumption 2.1. The parameters 0k  , 0k
  in the algorithm satisfy k  , k

 


 ,

=
k

  
 

when k is large enough. Let = k k
k k      and denote k 



 after a sufficient large
k .

Algorithm 1: Proximal Alternating Linearization Algorithm with Inexact Oracles
Step 0 (Initialization) Choose a starting point 0 nu  , 0 0( )g f u  , an initial error 0 0  .

Choose parameters 1 min 0   ,  1 0,1  , 1  , 0 0  , 1 0  and let 1 0y u . Set 1k  .

Step 1 (Solving the  -subproblem) Call the oracle (2) at 1ku
 to obtain

^
1( )ku  and

compute
21argmin ( )

2
k k k

ky
u y y y      

 
,

then let 1 1 1( ) ( )( )k k k k k k k k
kg g u y u y                .

Step 2 (Stopping criterion) If 0ke  , then STOP!
Step 3 (Descent test and constants update) If

1( ) ( )k k
ku y e     ,

set 1k ky u
  (descent step) and choose 1 minmax , ,k

k k


  


       
; otherwise set

1k ky y  (null step) and choose 1k k   . If 1 1k k
    , otherwise

k
k

  


 .

Step 4 (Error updating) Let 1k k   ,  0,1  .

Step 5 (Solving the  -subproblem) Call the oracle (3) at ku to obtain
^
( )ku and compute

2+1
+1

1argmin ( )
2

k k k
ky

u y y y      
 

,

then let 1 1
1( ) ( )( )k k k k k k k k

kg g u y u y        
       . If

~ k
k

  , set 1k k
    , otherwise

~ k
k

   .
Step 6 (Loop) Set 1k k  and go to Step 1.
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Remark 1. (i) According to the first-order optimality condition of  -subproblem, we can get the
following result straightly

 21
1

10 ( )
2

k k k
ky y y u   


    
 

,

and then ( )k kg u  can be directly verified. Similarly, ( )k kg u  .

(ii) Via the update rule in Step 3, the proximal parameter  k does not increase whenever the
null step or descent step occurs and satisfies that min 1k k    . Moreover, we can obtain k is
unchanged as k  .

3. Convergence analysis
In every iteration of Algorithm 1, we need to solve two subproblems on approximate proximal

point mapping. Based on the items (i)-(iv) of Lemma 2.1, it could be proved that the series of the
approximate point  ku must be bounded and convergent under the condition of finitely many
descent steps.

In light of the property of prox-bounded function with the form of lower- 2C function, we prove
that the sequence of iterates  ky converges towards the proximal point of  in the nonconvex
background with finite serious steps.

Theorem 3.1. Let
21argmin ( )

2y
q y y y

       
  

. Suppose  ku and  ky are produced

by Algorithm 1, and the Assumption 3.1 is satisfied for the parameters 0k  , 0k
  , 0k

  . If

there just exists finitely many serious steps and the last serious step is denoted as y


, then
ky converge to y



as k  and y


is just a stationary point of  .

Next, in the case of serious steps occurring infinitely, it could be showed that every cluster point
of the series  ky is stationary for  .

Theorem 3.2. Assume the sequences  ku and  ky are respectively generated by Algorithm 1

and Assumption 2.1 is satisfied for the parameters 0k  , 0k
  , 0k

  . Denote

 1| k kL k y y  and when L is infinite, then every cluster point of  ky is stationary for  .

4. Conclusions and future work
For the optimization problem of the sum of two non-convex and non-smooth functions, we

propose an executable alternate linearization algorithm with inexact oracles, which decomposes the
original problem into two different convex approximate subproblems. In each iteration, the
proximal point of the approximate model needs to be calculated alternately. At the same time, the
parameters and errors are updated according to specific criteria. Under appropriate conditions, it is
also showed that the algorithm has good convergence properties in theory. In essence, we propose a
new approximate proximal point method, which is suitable for solving more general non-smooth
non-convex optimization problems. Hence, our proposed algorithm is more universal.

The convergence analysis shows that this algorithm effectively solves non-convex and
nonsmooth minimization problems. However, there are still some problems that need further study:

1. Can alternate linearization algorithms with inexact data be applied to other decision problems?
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2. How to select appropriate parameters to improve the efficiency of our algorithm?
3. We only consider the class of functions as lower- 2C are other non-convex functions applied to

our scheme?
These questions are still worth exploring and researching further.
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