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Abstract. Recently, deep learning has provided a new opportunity to achieve high precision and
real-time parameter identification of the doubly-fed induction generator (DFIG) in the event of
short-circuit fault. However, deep learning algorithms based on data training are facing the
challenge of relying on a large amount of training data and poor generalization performance. In
order to improve these shortcomings, we embed the forward calculation model of three-phase
short-circuit current (SCC) into the neural network, and propose an unsupervised neural network
which can realize high-precision parameter identification. The network only needs to convert the
short circuit current curve into a two-dimensional gray level map to complete the precise training of
the network without real labels, which effectively improves the fitting ability of the network for
inverse problems. The simulation results show that the proposed method can achieve high
precision identification of DFIG parameters both within and outside the domain, and verify the high
precision identification and generalization ability of unsupervised networks.
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1. Introduction

Wind energy has recently gained special attention, which is an important renewable energy with
commercial application prospects. Doubly fed induction generator-based wind turbines (DFIG-WTs)
are widely used in wind power generation system because of its advantages, such as high utilization
rate, small inverter capacity and power decoupling control. When a short-circuit fault occurs in a
power system, a large short-circuit current (SCC) will be contributed by DFIG-WTs in the wind
farm [1]. The security and stability of power system will be greatly affected by SCC. An accurate
calculation of SCC is of great importance for relay protection setting and optimization design of
electrical equipment [2]. The SCC contribution of DFIG is dictated by a combination of factors,
including the electrical parameters of the machine and the controller configuration of the converters
[3].

An accurate calculation of SCC depends on establishing a reasonable dynamic equivalent model
for wind farm. Wind farm modeling methods based on DFIG have been widely concerned
[4],[5],[6],[7]- Accurate SCC calculation and control of wind turbines depend on accurate model
parameters of wind turbines. Effective identification of turbine parameters is of great significance
for improving the performance of wind turbines [8][9][10].

With widely application of deep learning, deep learning provides an opportunity for DFIG
parameter identification for DFIG. However, deep learning algorithms based on data training are
facing the challenge of relying on a large amount of training data and poor generalization
performance. In order to improve these shortcomings, we embed the forward calculation model of
three-phase short-circuit current into the neural network, and propose an unsupervised neural
network which can realize high-precision parameter identification. The rest of this article is
organized as follows. Section II describes the mathematical model of DFIG; Section III illustrates
the parameters identification method based on unsupervised learning; Section III gives experimental
results to verify the proposed methodology; and Section IV gives the conclusion.
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2. Mathematical Model of DFIG
Motor convention is applied on the relevant electrical parameters of the stator and rotor sides of

DFIG. The magnetic saturation effect of the magnetic circuit of the generator is neglected. The
electromagnetic transient model [1] of DFIG in the synchronous reference frame are given by:
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where u,,u, i i v, v, R R L L arethe voltage, current, flux, resistance and inductance of
the stator and the rotor windings, respectively. L, =L, -L, and L, =L,-L,,L,and L, are the
stator and rotor leakage inductance, respectively. L, is the magnetizing inductance. @, =@, —®, ig
the slip angular velocity, where @, and @, are the synchronous angular speed and rotor speed

respectively.
According to (2), the stator and rotor currents can be expressed as
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where L' and L' represent the transient inductances of the stator and the rotor windings,

respectively. &, =L, /L andk, =L, /L, denote the inductance coefficients of the stator and the rotor.
When three-phase short-circuit occurs in DFIG system, the short-circuit current includes power
frequency component, DC component and rotor frequency component. The voltage drop coefficient
k, of stator side is introduced, which is defined as: k,=(U,,~U,)/Uy,; Uy, and U, present the
voltage of the stator side in space vector before and after the fault occurs, respectively. Then, the
voltage of stator side after short-circuit occurs can also be expressed as U, =(1-k,)U,.
According to the principle of Crowbar resistance protection, the analytical expression of stator’s
three-phase short-circuit current in synchronous rotating coordinate system is obtained as follows:
= UK oy K e Ly Ry jo Ll e (s)
jo,L joL jo,L
where 7 =L/ /RS represents the stator transient time constant. Based on the discernability of

parameters analyzed in [11], five parameters including R . R, . L,. L,. L,to be identified were
determined. Based on the analysis of three-phase short-circuit current calculation model of DFIG
above, the relationship between the SCC of DFIG and these five parameters can be expressed as
follows:

i, =H(R,R,L,,L,,L,) (6)

The equation above establishes a forward physical model between DFIG parameters and
short-circuit current.
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3. DFIG Parameter Identification Method Based on Unsupervised Learning

3.1 Data Preprocessing

This paper introduces a preprocessing technology that converts one-dimensional signal data into
two-dimensional gray image [12]. Since the gray value of each pixel of a 2-D gray image is
distributed within an integer value of 0~255. It is assumed that the origin 1-D signal contains N
discrete points, and the conversion relationship is as follows:

. 1(i) =L (1)
p (i) =round {mx 255} (7)

where round(-) represents the integer operation. According to the input requirements of CNN
network, the image size is usually 16*16, 32*32, 64*64, 128*128, etc., so it is necessary to
intercept the length of the converted signal value as a vector 1xN*, and finally convert it into a
two-dimensional matrix through matrix transformation. That is, the grayscale image matrix can be
expressed as formula (8).

p(i) - p(i+N-1) ®)

p(i+N*=N) - p(i+N*-1)

The signal conversion process is shown in Fig. 1.
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Fig. 1 Conversion of 1-D SCC waveform to 2-D gray level

3.2 Design of Unsupervised Network

The forward physical model described in section II establishes the correspondence between the
parameters to be identified and the SCC curve. The purpose of this paper is to identify 5 parameters
of DFIG from the SCC curve, which is obviously an inverse problem.

[RoR Lo Lo L, ] = H ™' (i) ©)

The traditional data-driven based deep learning identification method uses a large number of
labeled paired data to form a training set, and then allows the neural network to fit these data.
However, the identification accuracy of this traditional method base DL is very dependent on a
large number of labeled training data. To solve this problem, we propose an unsupervised parameter
identification method. As shown in Fig. 2, By embedding the short-circuit current calculation model

into the network to adjust its parameters, the parameter identification results can be output without
data sets:

L
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0

N
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Fig. 2 Principle diagram of DFIG parameter identification for unsupervised learning

It is not difficult to find that the proposed parameter identification method is actually a full
combination of model-based optimization algorithm and data-driven-based deep learning. The
combination of learning and optimization forms a new paradigm of parameter identification, which
not only retains the high performance of optimization algorithm, but also fully solves the
generalization problem of DL.

Calculate the cross entropy error between the input and the gray level of the short-circuit current
data corresponding to the identification parameters:

L(£0)=-23[fmi +(1-1,)m(1-1,)] (1)

Equation (11) is taken as the loss function of the neural network, and the Adam optimization
algorithm with a learning rate of 0.001 is used for network training. The proposed network
architecture is shown in Fig. 3. The network input is a preprocessed two-dimensional gray level of
short-circuit current, and the network consists of two convolution layers, two pooling layers and
two fully connected layers. Its output is 5 parameter values to be identified. Behind both
convolution layers are connected Batch Normalization (BN) and ReLU activation functions, which
form a (Conv-BN-ReLU) CBR base unit. Written using the PyTorch 1.13.1 framework, python
version 3.7.16, and deployed on a PC with an NVIDIA GeForce GTX 1650 GPU with 4GB RAM.
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Fig. 3 Network architecture of parameters identification of DFIG

4. Experiments and Results

In order to verify the accuracy of the proposed unsupervised network in  parameters
identification of DFIG, Simulink-based platform was used to model a 1.5MW wind turbine
equipped with Crowbar resistance, and its parameters are shown in Table 1. It is assumed that the
wind speed is unchanged before and after the short-circuit fault, which are both 11 m/s, and the slip

rate is — 0.18. When <0 , the DFIG wind turbine is in steady state, at time = 0 , the short-circuit
fault occurs, and the Crowbar resistor is started immediately for protection, and finally it returns to

normal at the moment ¢ =0.1 , that is, the fault duration is 0.1 seconds.

Table 1. DFIG parameters used in simulation

Parameters Value Parameters Value
R /pu 0.023 R /pu 0.016
L, /pu 0.18 L. /pu 0.16
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The unsupervised parameter identification method proposed in this paper is compared with
traditional methods, such as particle swarm optimization (PSO), adaptive variant Particle swarm
optimization (AMPSO)[11], end-to-end deep learning method (CNN1). The parameter settings of
PSO and AMPSO are consistent. As for the end-to-end deep learning method CNN (w/o physics
model), the simulation software Simulink was used to randomly generate 4000 pieces of data to
form a simulation data set. Parameter identification results are shown in Table II. As can be seen
from Table II, the error of parameter identification based on data-driven Deep Learning is obviously
much smaller than that based on optimization algorithm, which is a beneficial result of training with
large amounts of data. However, the identification error of data-driven DL(CNNI) is still greater
than that of improved PSO (AMPSO), which may be due to the strong dependence of data-driven
CNN on data and its generalization ability is limited. The unsupervised parameter identification
method proposed in this paper is to embed the short-circuit current calculation model in the original
CNN training process. The identification accuracy has been effectively improved, and the average
identification error has been reduced from 2.98% to 2.20%. Even for the parameters R and R; that
are difficult to identify, whose errors have been reduced from 4.78% and 5.81% to 3.48% and
4.37%, respectively. It fully shows that the neural network embedded physical model can correct
the wrong results of the network to a certain extent. Fig. 4 shows the short-circuit current curves
corresponding to four different identification methods. It can be seen that the overall error of the
method proposed in this paper is much smaller than that of other comparison algorithms, which
verifies the correctness of the method proposed in this paper.

Table 2. Comparison of parameter identification results

Algorithms | Parameter R, R, L, L, L,
PSO Value 0.0211 0.0168 0.1815 0.1807 2.7898
Error 8.26% 5.00% 0.83% 12.94% 6.01%
Value 0.0241 0.0151 0.1809 0.1567 2.8503
AMPSO Error 4.78% 5.81% 0.51% 2.09% 1.71%
CNN1 Value 0.0240 0.0149 0.1807 0.1636 2.8611
Error 4.35% 6.88% 0.39% 2.25% 1.34%
CNN2 Value 0.0222 0.0167 0.1806 0.1629 2.8714
Error 3.48% 4.37% 0.33% 1.81% 0.99%
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Fig. 4 Current curve of three-phase short-circuit fault identified by four methods
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5. Conclusions

The accurate calculation of SCC depends on the accurate identification of DFIG parameters.
With deep learning being widely used, deep learning has provided a new opportunity to achieve
high precision and real-time parameter identification of the doubly-fed induction generator. This
paper investigated an unsupervised neural network for parameter identification of the doubly-fed
induction generator based on short-circuit current, which embeds the forward calculation model of
three-phase short-circuit current into the neural network, and only needs to convert the short circuit
current curve into a two-dimensional gray scale data into network without real labels. We discussed
the three-phase short-circuit current calculation model of DFIG and the parameter identification
method of DFIG based on unsupervised principle. The simulation results show that the proposed
method can achieve high precision identification of DFIG parameters both within and outside the
domain, and verify the high precision identification and generalization ability of unsupervised
networks.
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