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Abstract. Breast cancer exhibits a notable degree of heterogeneity in its occurrence and
progression, encompassing diverse clinical patterns and outcomes among patients even with
identical clinical pathological stages. Genetic mutations in different subtypes of breast cancer may
lead to different types of disease and have different clinical implications. Therefore, molecular
typing based on the characteristics of breast cancer heterogeneity and the screening of associated
genes for different subtypes of breast cancer may be able to more accurately determine the
pathogenic genes of breast cancer. In this paper, we propose a weighted sample-specific network
based on breast cancer subtypes to predict associated genes, named BGSSN. To better reflect the
individual characteristics of patients and the importance of patient samples in different subtypes, the
weight of samples is added when constructing the sample-specific network. The random walk with
restart method is then utilized to predict new breast cancer-associated genes within the constructed
network. By leveraging this method, the network structure can be effectively explored to identify
potential gene candidates.

Keywords: cancer subtypes; genes prediction; weighted sample-specific networks; random walk
with restart.

1. Introduction
Breast cancer has become the most common malignant tumor, ranking the first among female

malignant tumors and its incidence is still on the rise, which seriously threatens women's health.
The occurrence and development of breast cancer is the result of multiple factors, with high
heterogeneity, leading to different prognosis and treatment response, and there are problems of
diagnosis difficulties or biases. The causes of tumor heterogeneity include genomic differences
within cancer cells, transcriptome differences, and epigenetic modification differences, which
require us to further refine the disease-associated genes in order to better guide the treatment of
cancer[1, 2]. Therefore, identifying genes associated with different subtypes of breast cancer is an
important goal for accurate diagnosis, treatment, and prevention of breast cancer.

At present, many computational methods have been proposed for disease-gene associations
prediction. These methods can be roughly divided into three categories: methods using graph theory
algorithms; methods using machine learning algorithms; and methods to combine graph theory and
machine learning techniques[3]. Methods that use graph theory algorithms to predict disease-gene
associations include RWR[4], RWRH[5], PRINCE[6], DADA[7], RWr-MH[8], PhenoRank[9], and
NetCore[10]. These methods usually obtain new weights of genes through random walks in the
context of PPI networks, which can simply reorder genes to identify new disease genes. However,
these methods preselect seed genes from PPI networks with known associations, and not all genes
are directly connected in PPI networks, which has certain limitations. Methods that use machine
learning algorithms to predict disease-gene associations include CIPHER[11], CrossRankStar[12],
pBRIT[13], Scuba[14]. They can efficiently handle large numbers of candidate genes and any
number of data sources, as well as severe imbalances with few known disease genes that need to be
predicted on a large scale, but they require a large memory footprint. Methods that use a
combination of graph theory and machine learning techniques to predict disease-gene associations
include IDLP[15] and HerGePred[16]. These methods are based on the input of disease gene
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heterogeneity networks, and they can predict the genes associated with diseases that are not
associated with PPI networks. But they predict a lower degree of disease-associated genes in the
PPI network. These methods can predict highly associated genes only if the disease-associated
genes are unknown. Most of the above methods are used to predict disease-gene association for
multiple diseases at the same time, and few methods to predict associated genes based on disease
heterogeneity.

To address this problem, a weighted sample-specific network called BGSSN is proposed for
predicting breast cancer-associated genes based on cancer subtypes. This approach assigns different
weights to tumor samples of various subtypes, allowing for the construction of weighted
sample-specific networks that capture individual patient characteristics. The random walk with
restart method is employed to predict new breast-associated genes within these networks.
Experiments have proved that BGSSN can more accurately predict breast cancer genes and assist
tumor targeted therapy. An overview of the BGSSN is shown in Fig. 1.

Fig. 1 Overall overview of BGSSN. For breast cancer subtypes, firstly, differentially expressed
genes are screened using the R package, secondly, assign different weights to different subtypes of
tumor samples. finally, construct weighted sample-specific network and the random walk with
restart algorithm is used to predict new breast cancer-associated genes
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2. Materials and Methods
2.1 Data Preprocessing

We download BRCA datasets from the UCSC Xena browser (https://xenabrowser.net/), which is
divided into four subtypes uses PAM50 assay (Basal, Her2, LumA and LumB). For the data of gene
expression, The R package limma is utilized to analyze gene expression data and identify
differentially expressed genes among various breast cancer subtypes. As shown in Table 1. For the
selection of known breast cancer-associated genes, we refer to the DISEASES resource[17] and
choose 50 genes as references (See supplementary materials Table 1).

Table 1. Breast cancer dataset used in this study
Breast cancer Subtype Sample Gene expression The gene after screening

Normal 114 16582 1000
Basal 112 16582 1000
Her2 53 16582 1000
LumA 248 16582 1000
LumB 98 16582 1000

2.2 Methods
2.2.1 Sample importance assessment

In order to address the issue of small data sample size and accurately capture the importance of
each sample, the weight of each sample i is determined using the relative entropy between the
normal sample and the subtype sample i . Relative entropy, also known as Kullback-Leibler
divergence, is a way of describing the difference between two probability distributions. The
calculation formula is as follows.
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where ( )Siw is the weight of the sample i of subtype S , n is the total number of normal
samples.
2.2.2 Construction of weighted Sample-specific network

Gene-gene networks reveal how genes interact with each other, in the process of gene network, it
is necessary to count and calculate the correlation information between different samples, so it is
necessary to establish a network with multiple sample data. However, this network only contains

https://xenabrowser.net/
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the common regulatory information among various samples, and ignores the specific regulatory
abnormal information of each sample, so we propose a weighted sample-specific network.

Sample-specific network in different subtypes thS (S=1,...,s) is calculated, using gene expression

data from normal samples as reference. First, the marginal Pearson correlation coefficient nPCC is
calculated for each pair of genes in the normal sample, then a single sample i is added to the

normal sample to obtain the Pearson correlation coefficient
( )
n

SiPCC
1 for each pair of genes in the

new sample. Because of the specificity of a single sample, different samples have different
differences in the same background network. Then, difference

( )SiPCC between all normal
samples and all additional single samples and the weights of the single samples as the gene edge
score network
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For genes g and 'g . If
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score is used as their correlation weight, where n is the total number of reference samples.

3. Results and Discussion

3.1 Analysis of the breast cancer-associated genes predicted by BGSSN
BGSSN separately predicts new breast cancer-associated genes for different subtypes (See

supplementary materials Table 2). Interestingly, it is observed that up to more than 90% of the same
genes are predicted in breast cancer subtypes (Fig. 2a). It is not uncommon for different cancer
subtypes to share certain genetic characteristics. In this case, the presence of the common gene in
different subtypes implies a potential similarity in the underlying molecular mechanisms or
pathways involved in these subtypes. Additionally, unique genes are found in breast cancer
subtypes. For instance, gene PIGT, CCNI in subtype Basal, YWHAH, APEX1 in subtype LumA,
and KHK-A phosphorylation of YWHAH are clinically associated with breast cancer
metastasis[18]. The pathogenesis of different subtypes can affect the expression and function of
genes, so the study of diseases associated genes is great significance.

(a) (b)

Fig. 2 (a)BGSSN predicts the duplication rate of genes associated with different subtypes of
breast cancer (b) The proportion of ten immune cells in different of breast cancer subtypes.

3.2 Evaluation of infiltrating immune cells by tumor immunophenotype
From a clinical point of view, the prognostic effects of different immune cell populations in

different subtypes or different stages of tumors are helpful in the design of effective personalized
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immunotherapies[19]. The expression value of the associated genes predicted by BGSSN is
inputted into the TIP tool[20], which outputs the number of tumor immune cells. To visualize the
different distributions between subtypes, we use boxplots to show the distribution of the estimated
proportion of immune cell types for each subtype (Fig. 2b). It is observed that the proportion of
immune cell types in different subtypes is significantly different, which provides a basis for further
exploration of their prognostic value.

3.3 Ablation experiments
To demonstrate the performance of BGSSN in predicting breast cancer-associated genes, the

accuracy of SSN, LIONESS, and BGSSN is compared for predicting known associated genes in
different subtypes of breast cancer. SSN is a differential analysis method to assess SINs based on
the statistical perturbation measurement of a single sample against a group of control samples[21].
LIONESS is a method to reverse engineer SINs from aggregate networks without the need for
control samples[22]. Of the 50 known breast cancer genes, 20 are randomly selected as seeds to
predict the accuracy of the remaining 30 known genes. As shown in Fig. 3a, BGSSN is superior to
other methods in predicting genes associated with breast cancer. This shows that BGSSN has better
performance in gene prediction than the current classical algorithms. Additionally, the accuracy of
BGSSN is compared for predicting associated genes without differentiating subtypes and
constructing a single-sample network without adding weights (Fig. 3b). The results demonstrate that
BGSSN is better than the method without subtype and without weight in predicting associated
genes. This finding implies that by subtyping the disease may lead to more effective identification
of breast cancer genes.

(a) (b)

Fig. 3 (a) Accuracy of BGSSN, LIONESS, and SSN in predicting associated genes in different
subtypes of breast cancer (b) Accuracy of BGSSN without distinguish subtypes and constructs a
single sample network without adding weights to predict breast associated genes

4. Conclusions
Based on the heterogeneity of breast cancer, in order to accurately identify breast

cancer-associated genes, we propose a weighted sample-specific method based on breast cancer
subtypes to predict associated genes. By constructing a single weighted sample-specific network,
the characteristics of the sample network are analyzed to further predict the associated genes of
breast cancer. The results of prognostic analysis are helpful to design effective personalized
immunotherapy for breast cancer, Ablation experiments demonstrate the performance of breast
cancer-associated genes prediction algorithms. In conclusion, the genes predicted by BGSSN are
highly likely to be breast cancer-associated genes, and provide new horizons and new ideas for
finding the pathogenic genes of cancer.

In this work, only one type data on gene expression of omics data is used to predict breast cancer
genes, future research should explore the incorporation of additional types of data, such as
methylation, or fuse multiple omics data to identify new breast cancer-associated genes.
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Availability of data and materials: Supplementary materials and BGSSN methods are available

at https://github.com/qianliu2022/BGSSN-master.
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