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Abstract. Accurate prediction of electricity demand is crucial to ensure the stability and dependability 
of local power grids. Numerous scholars have put forth comprehensive prediction systems; However, 
the majority of these models fail to capture the inherent global features present within the data. This 
study introduces a novel integrated prediction system that leverages the synergistic capabilities of 
Time Convolutional Network (TCN) and Long Short-Term Memory (LSTM) architectures, aiming to 
enhance the accuracy of short-term electric load forecasting. The initial step is to establish separate 
prediction models for LSTM and TCN, with a focus on electric load data. After combining the output 
results of these models, the reciprocal of the error square ratio was used as a weighting factor. By 
using this approach, the LSTM-TCN model for combined prediction is created. This research paper 
performs an exhaustive examination of the case study by employing authentic data sourced from 
the Australian Energy Management Authority. The study's findings support that the LSTM-TCN 
model outperforms both single prediction models and traditional network models in terms of 
performance. The results indicate that the LSTM-TCN model exhibits greater accuracy in predicting 
short-term energy demand. 

Keywords: short-term electricity demand prediction, Long Short-Term Memory (LSTM) neural 
network, Time Convolutional Network (TCN), reciprocal of the squared error ratio. 

1. Introduction 

Short-term load forecasting (STLF) primarily pertains to the prediction of electricity demand in 
the immediate future, encompassing forecasts for the upcoming day or week. It provides reference 
for tasks such as hydroelectric dispatching, unit start-up and shutdown, as well as coordination 
between water and fire. It is an essential groundwork for the daily operation of the power grid. 
Reliable STLF is needed for the safety and stability of the power system, facilitate efficient start-up 
and shutdown procedures of generating units, enable effective scheduling and planning activities, and 
support informed trading strategies. Hence, the prediction of short-term load has emerged as a 
significant field of study within the operational domain of contemporary power systems [1]. Over the 
past few decades, numerous methodologies for load forecasting have been proposed, broadly 
categorized into traditional forecasting models, single network models, and hybrid network models. 

Conventional models encompass techniques such as trend extrapolation, time series analysis, 
regression analysis, and other established methodologies. Krymova [2] proposed a trend estimation 
method that is globally applicable and a straightforward short-term forecasting strategy derived from 
this method. The proposed approach relies on minimal information pertaining to the progression of 
the pandemic and leverages robust seasonal trend decomposition techniques. Li [3] developed a profit 
and loss model for biomass energy potential by investigating the developmental trajectory of the 
overall population and electricity consumption within a specific research area. Ensafi [4] employed 
classical time series forecasting techniques, including Seasonal Autoregressive Integrated Moving 
Average (SARIMA) and Triple Exponential Smoothing, to predict furniture sales. Madhukumar [5] 
discovered that the Gaussian Process Regression (GPR) model series exhibited superior performance 
in load forecasting. These models, being probability-based and relying on non-parametric kernels, 
demonstrated the most favorable predictive capabilities. Du [6] proposed a Bayesian Optimization-
based Dynamic Ensemble (BODE), which overcomes the limitations of single-model approaches and 
provides a dynamic ensemble forecasting combination with time-varying base patterns for STLF. 
Zhang [7] introduced Crossformer, a Transformer-based model that considers not only time series 
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but also cross-dimensional dependencies among variables. These methods are easy to model and have 
good performance in stable load forecasting. However, they are not suitable for load sequences with 
strong randomness. 

Currently, load forecasting methods based on artificial intelligence are widely used, primarily 
using single neural networks and support vector machines as typical methods. Hu [8] introduced the 
Conformal Time Convolutional Quantile Regression Network (CTCQRN), a new approach for 
interval prediction. This method integrates the Conformal Quantile Regression (CQR) algorithm with 
the Time Convolutional Network (TCN) technique, eliminating the need for distribution assumptions. 
Lin Jun [9] and colleagues proposed a Long Short-Term Memory (LSTM) network that incorporates 
a two-stage attention mechanism for short-term regional load probability forecasting. Tang [10] and 
co-authors presented a short-term load forecasting model that utilizes a Time Convolutional Network 
(TCN) with channel and time attention mechanisms (AM). This model effectively captures the 
nonlinear correlation between weather factors and load. Deng [11] and colleagues introduced a 
quantitative combined load forecasting model (QCLF) designed to handle highly random and 
uncertain load-related data. Ghenai [12] and co-authors developed an adaptive neural fuzzy inference 
system (ANFIS) specifically designed to deliver highly accurate and very short-term energy 
consumption predictions for educational buildings. Niu [13] and colleagues presented a novel short-
term multi-energy load forecasting method that utilizes the CNN-BiGRU model. The model 
incorporates an attention mechanism for optimization purposes. FazlaliPisheh [14] and co-authors 
introduced an innovative univariate deep LSTM-based Stacked Autoencoder (DLSTM-SAE) model 
for short-term load forecasting. This model is enhanced with a multi-stage attention mechanism 
(MSAM), which includes an input attention mechanism and multiple time attention mechanisms 
incorporated during the training process. Yuan [15] and colleagues proposed a short-term overall 
daily prediction model that utilizes Variational Mode Decomposition (VMD) and two sets of multi-
step strategies. This model aims to improve the accuracy of daily predictions in the short term. The 
complexity of power system structures has led to a growing recognition of load nonlinearity and 
uncertainty. Expressing the relationship between loads and their influencing factors in a single model 
has become challenging due to these factors' increasing complexity. 

To enhance predictive performance, numerous researchers have introduced hybrid models and 
combination prediction models. For instance, Fan et al. [16] proposed the RF-MGF-RSM model as a 
hybrid approach for short-term load forecasting. This model effectively predicts electricity load by 
combining multiple techniques. Indeed, Hu et al. [17] proposed a fully integrated approach for load 
forecasting. Their method incorporates several techniques, including the use of the Complete 
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Improved 
Grasshopper Optimization Algorithm (IGOA), and Long Short-Term Memory (LSTM) network. This 
integrated approach aims to improve the accuracy and adaptability of load forecasting. Certainly, 
Alotaibi [18] employed various techniques for short-term load forecasting. Their study utilized Deep 
Neural Network (DNN), Artificial Neural Network (ANN) based on Multilayer Perceptron, and 
Decision Tree-based prediction (DR). By employing these different models, they aimed to enhance 
the accuracy and reliability of short-term load forecasting. Indeed, Javed et al. [19] introduced a novel 
two-level Encoder-Decoder (ED) network for load forecasting. Their proposed architecture consists 
of two stages. The first stage utilizes a short-receptive-field based dilated causal convolution (SRDCC) 
network, which helps capture local dependencies and patterns in the load data. The second stage 
incorporates a bidirectional Long Short-Term Memory (BiLSTM) network, which enables the model 
to capture both past and future context information. This two-level ED network aims to improve the 
generalization ability and prediction accuracy of load forecasting models. In their study, Chen et al. 
[20] introduced a hybrid algorithm, namely CEEMDAN-IGWO-GRU (CIG), which combines 
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), gated recurrent 
unit (GRU), and an improved grey wolf optimizer (IGWO). This hybrid model aims to enhance the 
performance of load forecasting by leveraging the synergistic effects of these techniques. Despite the 
remarkable achievements of previous hybrid models in load prediction, the DNN-ANN-DR model 
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proposed in reference [18] falls short in capturing the intricate details of the data, thereby impacting 
its overall performance. This study presents an innovative prediction model that integrates the time 
convolutional neural network (TCN) and the long short-term memory network (LSTM). Initially, 
LSTM is employed to forecast the electricity load, while subsequently TCN is utilized for load 
prediction. Finally, a weighted combination approach is employed to merge the predictions from both 
models, yielding the ultimate outcome. In essence, this paper contributes by: 

1. Our hybrid LSTM-TCN model exploits the strengths of both: LSTM's long-term memory for 
sequential data and TCN's local pattern detection for superior prediction of complex time series. This 
robust model increases accuracy and stability, and demonstrates improved fault tolerance and noise 
handling. 

2. The combined prediction model ensures reliable power system operations, offering superior 
accuracy compared to standalone LSTM or TCN models. This crucially aids energy supply and 
societal stability, enabling informed decisions, risk reduction, and efficient energy utilization for a 
smoothly running power system. 

3. Our hybrid model exhibits excellent generalization and predictive prowess across multiple real 
datasets. Extensive testing confirms its outstanding performance not only on training data but also on 
unseen data, showcasing strong generalization abilities, thus bolstering its reliability and real-world 
applicability. 

2. Model Framework 

In this section, a comprehensive overview is presented regarding various individual prediction 
models employed in this study. These models encompass the Long Short-Term Memory Network 
(LSTM), the Time Convolutional Network (TCN), weighted methodologies based on the reciprocal 
of squared error, as well as the metrics utilized for evaluating the performance of these prediction 
models. 

2.1 Long Short-Term Memory Network (LSTM)  

The Long Short-Term Memory Network (LSTM) is an enhanced version of the Recurrent Neural 
Network (RNN) designed to tackle the challenge of gradient explosion encountered when processing 
lengthy sequences. By designing effective memory and gating control mechanisms, LSTM effectively 
mitigates the vanishing or exploding gradient problem, enabling more effective learning and 
capturing of long-term relative dependencies in sequential data. LSTM, through its structural 
advantages, is able to learn long-range dependencies between data, thereby improving prediction 
accuracy. As the most widely-used and successful RNN structure, it is particularly suitable for short-
term electricity load prediction. 

LSTM controls the information flow in the network by introducing input gate (referred to as 'in'), 
forget gate (referred to as 'fn'), and output gate (referred to as 'on'). Although the LSTM model has 
powerful nonlinear mapping ability in processing time series data, it requires the explicit construction 
of relationships between features; otherwise, it is difficult to fully utilize the effective information 
between discontinuous features. Therefore, considering combining it with feature mining networks 
to improve the mining ability of load features. The three gates are shown in Equation (1): 
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Figure 1 illustrates the structure of the LSTM memory unit, which primarily consists of three 

memory units: the forget gate, the input gate, and the output gate. The tanh function is considered a 
superior activation function. 

2.2 Temporal Convolutional Network (TCN) 

The Temporal Convolutional Network (TCN) is a neural network architecture used for processing 
time series data. Compared to traditional Convolutional Neural Networks (CNN), TCN is able to 
more effectively extract features from sequential data. TCN is derived from CNN by incorporating 
multiple residual units. By introducing residual connections, TCN can propagate information across 
layers, thereby enhancing its learning capability and further improving model performance.   

The one-dimensional dilated causal convolution plays a vital role in TCN's residual units. By 
adjusting the convolutional coefficients to control the sampling interval of the input, TCN can have 
a longer receptive field with fewer layers. By increasing the filter size (n) and the dilation factor (d), 
the Temporal Convolutional Network (TCN) enables the top layer output to encompass a broader 
spectrum of input information. Moreover, by concurrently applying identical filters within each layer, 
the overall computational efficiency of the model can be enhanced. The structure of the dilated causal 
convolution is depicted in Figure 2, showcasing a filter size (n) of 2 and dilation factors (d) of [1, 2, 
4]. Following the inclusion of dilated convolutions, the output (yt ) at time (t) can  acquire 
information from inputs  (xt-7、xt-6、...、xt). 

 
Figure 2 illustrates the structure of the expanded causal convolution, taken from reference [21]. 

 
Compared to CNN, the causal convolutions in TCN are unidirectional, preventing the model from 

losing historical information while avoiding the influence of future information. This ensures that 
TCN becomes a more strict time-constrained model. 
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Figure 3 illustrates the working principle of TCN, where the non-linear mapping is implemented 

using the Sigmoid function. 

2.3 Hybrid Prediction Model  

Bates and Granger (1969) presented the combined prediction approach. The idea is that different 
prediction methods may give different results, therefore, each prediction model should be given 
different weights in order to obtain a better overall prediction model. Figure 4 illustrates the flowchart 
of the combined prediction model that integrates LSTM and TCN. 
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Figure 4 The flowchart of the combined prediction model, which includes LSTM model and 

TCN model. 
This article employs a residual-based optimal weighting approach. When a single model exhibits 

a smaller prediction error, it will be assigned a relatively higher weight in the combined model. The 
calculation process of this method, represented by formula (2)(3)(4), involves the simultaneous 
prediction of m time points by two individual models: 
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Here, the variables are defined as follows: 𝑎௜𝑝 reflects the i method final output prediction value 

at time-step 𝑝, 𝑎𝑝 reflects the corresopnding actual value at time t, 𝑟௜𝑝 reflects the residual in i 
method at time-step 𝑝, 𝑠௜ reflects the total squared residuals in i method at n time-step points. The 
weight coefficient of the i method, denoted as 𝑤௜, is calculated as the inverse of the square of the 
prediction error of each of the individual models. 

2.4 Model Evaluation 

To assess the performance of each model in this study, the Mean Absolute Percentage Error 
(MAPE) and Root Mean Square Error (RMSE) metrics are employed. Their definitions are as follows. 
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In this context, the variables are defined as follows: 𝑅௜ reflects the real load value, 𝐹௜ reflects 

the predicted load value, and n  reflects the number of time series points. 

3. Experiments  

3.1 Datasets 

The dataset utilized in this research was acquired from the Australian Energy Market Operator 
(AEMO). The dataset consists of power load data gathered at 30-minute intervals in Tasmania from 
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January to March 2014. The dataset exhibits a mean value of 1044.22 kWh, accompanied by a 
standard deviation of 88.322. To better understand the patterns in the dataset, we selected a one-week 
time span and visualized the data, as shown in Figure 6. 

 
Figure 5 Description of dataset [22]: AEMO load data for each region and month (season) in 

2019. 
By examining Figure 5, it becomes evident that the load variation exhibits periodicity, with a 

consistent daily trend. Specifically, the time intervals corresponding to peak and valley load curves 
remain relatively stable. Analysis of the box plot reveals a substantial presence of outliers in the load 
data during the fourth week of these three months, indicating a relatively high level of fluctuation in 
the power grid load during that specific week. 

Table 1 Statistical Indicators of Each Dataset 

 
3.2 Results of the Model  

For this study, the LSTM structure used 200 neurons in its hidden layer, whereas the TCN model 
utilized a kernel size of two for convolution and the dilation factor of 2. The original dataset was 
partitioned into three monthly groups, and within each group, the data sets were further split into 
training and testing sets in a ratio of 7:3. The testing set was utilized to compare the performance of 
SARIMA, DNN-ANN-DR, and the LSTM-TCN models, which are commonly employed in this study. 
Both SARIMA and DNN-ANN-DR models were configured with 200 hidden layers. The 
comparative outcomes are presented in Table 2. The best performance is indicated by bold text with 
a gray background, while the second best performance is indicated by a gray background only. 
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Table 2 Comparison of the performance of different models on various datasets 

 
 

By referring to Table 1, it is evident that the LSTM-TCN model exhibits a lower MAPE value of 
1.422 for the same dataset compared to the traditional SARIMA and DNN-ANN-DR models. Across 
various datasets, the LSTM-TCN model employed in this study consistently demonstrates a lower 
MAPE value compared to other traditional models.  

 
Figure 6 displays the prediction results of the LSTM model. The top plot shows the original 

electric load values, the middle plot shows the predicted electric load values, and the bottom plot is 
the visualization of the overlay between the original and predicted values. 

 

3.3 Melting Experiment  

To improve the validation of the model's performance, the experiment evaluates the predictive 
effects of each designed model and then compares the hybrid methods performance with them. When 
operating independently, the designed LSTM model is configured with an input feature dimension of 
2 and 200 neurons in the hidden layer. In the standalone TCN model, the convolution kernel size is 
set to 2, and the convolution dilation factor is set to 2. The prediction performance of various models 
after 1000 training iterations is presented in Table 3. 

Table 3 compares the results of independent models and the combined models on variable 
datasets. 

 
 

Based on the findings from Table 3, it can be observed that the hybrid forecasting model, which 
combines LSTM and TCN as designed in this paper, demonstrates lowest RMSE value and MAPE 
value across diverse datasets and months. In terms of the overall dataset, the hybrid LSTM-TCN 
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model demonstrates a 1.442% MAPE value and a 20.5893 RMSE value. The prediction accuracy has 
been enhanced when comparing the LSTM-TCN hybrid model with independently designed TCN 
and LSTM networks. 

4. Conclusion  

Various fields have widely applied LSTM, TCN, and other deep learning models. This study 
presents a novel integrated model for short-term load forecasting in the power system, utilizing a 
combination of LSTM and TCN architectures. The experimental results of the LSTM-TCN model, 
traditional models, and individual models are compared using real-world data obtained by Australian 
Energy Management Agency. The comparison leads to the following conclusions:  

1. The combination of LSTM and TCN models with weighted reciprocal error squares in the 
proposed LSTM-TCN model corrects the high-error time series data in the individual models, 
reducing the overall errors. The experimental findings demonstrate a significant improvement in the 
accuracy of short-term power load prediction achieved by the LSTM-TCN model. 

2. In future study, it is worth investigating the introduction of attention mechanisms into TCN. 
Additionally, natural factors such as temperature, carbon dioxide concentration and seasonal 
influence can be included in the analysis of short-term load forecasting. Moreover, by integrating 
specific scenarios, the applicability of this model can be extended to various industries including 
agriculture, commerce, and other sectors, enabling the extraction of valuable insights. 
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