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Abstract. Efficiency and accuracy of evaluation for the key to microstructure parameters in aero-
engine materials is crucial for understanding the properties and performance. However, it is still a 
tough research topic to identify the important microstructural variables using conventional methods. 
In the present work, attribution (variable importance evaluation) methods based on neural networks 
have been systematically sorted out with a comprehensive understanding of the strengths and 
limitations. Microstructures of nickel base single-crystal alloys is taken as an example for discuss 
the variable importance evaluation methods, namely forward stepwise, backward stepwise, and 
partial derivative. Suggestions are provided for future application in material science and solid 
mechanics. 
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crystal. 

1. Introduction 

Aero-engine is the supply power and the key part of aircraft. The basic components of jet engines 
include the compressor, combustion chamber, and turbine. The engine starts by drawing in air through 
the intake, where the compressor compresses the incoming air, increasing pressure and temperature 
to make the engine work in the proper function [1, 2]. In a jet engine, higher the import temperature 
of the turbine can cause better engine's performance when the engine is being operated. This is 
because higher temperature in turbine engine allows more efficient combustion power and expansion 
of gases. When thrust has been increased, the fuel efficiency will also be improved. However, the 
higher inlet temperatures can also bring challenges to the engine's structures and lead to some specific 
problems [3]. 

One major challenge is the engine tolerance ability of the engine components to withstand the high 
temperatures. The turbine engine rotor and other high temperature components will be exposed to 
extremely hot gases, which can reach temperatures of over 1000oC [3, 4]. The high temperature can 
cause thermal stress, fatigue, and lead to some material degradations such as warping, or some failure 
of the components. As a result, the materials being used in the construction of these components must 
be carefully selected to be cooperated with the elevated temperatures and maintain their structural 
integrity. Structural integrity is determined by material properties. As one of the commonly used areo-
engine materials, nickel base single-crystal alloys are widely adopted for turbine blades. During high 
temperature working condition, the microstructure of single crystal materials will be rafted [5]. 
Thereby, it will affect the mechanical properties, characterize and evaluate the key microstructure 
remains to be studied. 

Efficiency and accuracy of evaluation for the key to microstructure parameters in single crystal 
materials is crucial for understanding the properties and performance [6, 7]. To achieve this, machine 
learning is based on approaches offer for feasible solution that complements existing work in the field 
[8, 9]. Traditional methods of evaluating microstructure parameters are to rely on manual analysis, 
which can be time consuming, subjective, and easy to cause human error. On the other hand, machine 
learning has the potential to automatically and simplify the evaluation process to provide more 
efficient and reliable results. By training machine learning models on large datasets of microstructure 
images and the related parameter values has becomes possible to establish relationships between the 
visual features of the microstructure. These models can then be used to predict the values of these 
parameters for new and unseen microstructures. Different types of machine learning algorithms can 
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be employed for the job. For instance, Convolutional Neural Networks (CNN) or random forests. 
These algorithms excel at extracting intricate patterns and features from images can be enabled to 
capture subtle variations in microstructure and relate them to specific parameters [10, 11]. In 
conclusion, machine learning-based approaches offer a promising solution for efficiently and 
accurately evaluating key microstructure parameters in single crystal materials. By leveraging the 
power of algorithms to learn from data, these methods can complement existing evaluation techniques, 
leading to more reliable conclusions and providing a solid foundation for further analysis and 
exploration in material science. 

The evaluation of algorithm for the microstructure characteristics of the materials needs to be 
studied. There are some existing works. Weng et al. [12] used the gradient-based attribution and the 
correlation combined analysis provided a quantitative method to evaluate the important 
morphological variables for the material model. They [13] subsequently developed a principal 
component aided version which is able to deal with the correlated input variables. Peng et al. [14] 
also utilized the ML model to find the dominant features in fatigue life. However, there are many 
evaluation methods at present contain some shortcomings. The processes are needed to systematically 
sort out the advantages and disadvantages and give a more suitable method. Seven methods which 
can give the relative contribution and/or the contribution profile of the input factors were compared 
in the Gevrey’s work [15]. Olden et al. [16] compared the variable importance evaluation methods as 
well.  But these works are aimed at other fields such as ecology but no one has systematically sorted 
out in the field of material science, which is still a research blank. A study is needed to complete the 
existing work and provide a comprehensive understanding of the strengths and limitations in different 
evaluation methods. 

In the present work, taking the microstructure parameters of single crystal materials as an example, 
the attribution (variable importance evaluation) methods are systematically sorted out, and reliable 
conclusions are obtained to provide a basis for future applications. 

2. Method 

2.1 Microstructures of nickel-based single-crystal alloys 

Long-term thermal exposure leads to some significant changes in the microstructure of nickel-
based single-crystal alloys, particularly the formation of rafting, where the γ and γ′ phases become 
long strips instead of their original cubic distribution [5]. The virgin microstructure of superalloys is 
shown in Fig. 1(a). The white phase is γ, while the black phase is γ′. The γ′ precipitates are distributed 
in cubic symmetrically. After e.g., 1000 hours of aging treatment at 1100◦C, the result of the 
microstructure is displayed in Fig. 1(b), where the γ and γ ′ phases become as the long strips, i.e., 
rafting. The rafting results in the degradation of mechanical properties and reduction of fatigue life 
in these alloys [17].  

 
Fig.1 (a) Virgin and (b) rafted states of microstructure of single crystal alloys [13, 17]. 
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2.2 Mean intercept length (MIL) 

To describe the microstructure change during rafting, the Mean Intercept Length (MIL) method 
[18] was introduced to extract the microstructural information. It involves averaging the intercept 
length of parallel equidistant lines in a specific orientation φ, which reads as 
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where Lint is the total length of parallel lines that belongs to the family and intersect the region of 
interest and Nint is the number of intercepts. As depicted in Fig. 2, the black phase of the simple 
microstructure is analyzed in orientation φ. The total length of the red lines yields 𝐿int and 𝑁int = 6 
because the parallel lines are cut off into six intercepts. The MIL data can be presented as the using 
of polar coordinates, creating a rose diagram that shows the length distribution of an Orientation 
Distribution Function (ODF) as a function of orientation. Taking the examples from [13], the 
microstructures are described by the rose diagrams. 

 
Fig.2 Representation of the microstructures of the single-crystal alloy taken from [12, 13]. (a) 

Schematic diagram of MIL implementation. (b) and (c) MIL discrete data and Fourier series   
representations of the virgin and rafted state microstructures. Different dashed curves are Fourier 

series of different orders. 

2.3 Fourier series for 2D microstructures 

The basic idea is to construct a condensed representation for the microstructure in some different 
orientations. From the MIL method, the rose diagram can be described by the function d(φ), with φ 
as the polar angle that illustrated in Fig. 2. d(φ) is a representation of the given microstructure and 
can be expanded in Fourier series [12], as 
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where Re is an operator that takes the real part, while D(0) , am and bm are the constant coefficients. 
These parameters of different orders reduce the MIL data dimension, which are easier representations 
of microstructures. 

2.4 Methods for quantifying variable importance in ANNs 

2.4.1 Forward stepwise 

Assesses the change in the mean square error, which means the smaller the error, the better the 
model of the network by sequentially adding input neurons. The more input parameters, the more 
model information, the better the model to the neural network (rebuilding the neural network at each 
step). The resulting change in mean square error for each variable addition illustrates the relative 
importance of the predictor variables [15].  



 

513 

Advances in Engineering Technology Research ICISCTA 2023
ISSN:2790-1688 Volume-7-(2023)

Take three variables as an example to judge the order of importance of these three variables. First, 
select one of the variables in turn, and use the relationship between the neural network variable 
(microstructure) and the output (mechanical properties), and find that the model established by the 
three variables and the mechanical properties will have different prediction errors, and there will be 
a best variable. Leave it on. For the remaining two variables, repeat the above operation, and keep 
the better variable among them, so far the importance ranking is obtained. 

2.4.2 Backward stepwise 

Assesses the change in the mean square error of the network by sequentially removing input 
neurons from the neural network (rebuilding the neural network at each step). The resulting change 
in mean square error for each variable removal illustrates the relative importance of the predictor 
variables [15].  

Take three variables as an example to judge the order of importance of these three variables. First, 
build a model with all variables, then remove each variable in turn, and use the relationship between 
neural network variables (microstructure) and output (mechanical properties), and find that the 
models established by the three variables and mechanical properties will have different prediction 
errors. There will be a best variable, keep it. For the remaining two variables, repeat the above 
operation, and keep the better variable among them, so far the importance ranking is obtained. 

2.4.3 Partial derivatives 

There is a certain relationship between partial derivative and importance. The partial derivative is 
computed from the ANN output with respect to the input neurons [19]. To illustrate that the derivative 
can reflect the importance, examples are taken: 

Example 1: Y = 2x1 + x2  , 
Example 2: Y = x12 + 2x2 . 
The partial derivative of Example 1 can be written as φY/φx1 = 2 and φY/φx2 = 1. The partial 

derivatives represent the sensitivity of the output Y with respect to each input variable. In this case, 
the derivative values indicate that a unit change in x1 has twice the impact on the output compared to 
a unit change in x2. Therefore, x1 can be considered more important than x2 in determining the output 
Y. The partial derivative of Example 2 can be written as φY/φx1 = 2x1 and φY/φx2 = 2, if it is a 
high-order expression, there are variables in the derivative, so we integrate the derivative in an 
interval to judge the importance, and finally expression: In this case, the derivatives contain variables, 
which can complicate the assessment of importance. To overcome this, we integrate the derivatives 
over a specific interval to evaluate the overall importance. The resulting expression will help us 
determine the relative importance of the input variables [12]: 
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where na is the number of the evaluated variables. pi,j is the partial derivative of the ith input on the 
jth output. sij indicates the effect of the ith input on the jth output.  

3. Results and discussion 

3.1 Implementation detail 

Regular microstructures were generated to assess the ability of microstructure Fourier series. 
Representative volume elements (RVEs) were created according to the microstructures with periodic 
boundary condition assigned. The stress was prescribed and the strain is the output. The stress and 
strain were set as the input and output of the neural network as 

  , , f F    (4) 
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where F denote the Fourier series consists of different order components. After the key stress and 
strain points were extracted from the curves, there are 3353, 418 and 418 samples in training, 
validation and test datasets. The dataset generation process can be found in [12] in detail.  

3.2 Comparison of different attribution algorithm 

3.2.1 Variable importance 

Forward stepwise and Backward stepwise, which are likely referring to statistical variable 
selection techniques used to identify important variables in a regression model. These methods 
iteratively add or remove variables based on certain criteria, such as p-values or adjusted R-squared, 
to determine the most influential predictors. Partial derivative can be automatically computed using 
pyTorch framework. Ranked variable importance obtained from three methods is plotted in Fig. 3.  
Dm(0) and Dp0 are related to isotropic properties of the material, while Dm2 and Dp2 describe the 
anisotropy of the material. As for directional microstructures, Dm2 and Dp2 will be more crucial. 
The most important component identified by the methods is Dp2, which agrees with the expectation. 

However, when evaluating the partial derivatives, the importance of Dm2 is relatively small 
compared to what was determined by the Forward and Backward stepwise methods. This could be 
due to the high correlation between Dm2 and Dp2. When variables are highly correlated, their 
individual contributions may become less distinguishable, leading to differences in their importance 
rankings between variable selection methods. 

 
Fig. 3 Ranked variable importance obtained by three different evaluation methods. 1-most 

important, 6-least important. 

3.2.2 Robustness and computational expense 

Firstly, in terms of algorithm robustness, each training is random. It's important to note that random 
initialization can indeed lead to variations in the results obtained from iterative methods like Forward 
stepwise and Backward stepwise. This randomness is inherent to the algorithms, and as a result, the 
training errors may vary across different runs. However, this does not affect the evaluation of 
variables whose importance are significantly different. The randomness problem occurred when two 
variables have similar importance is acceptable. On the other hand, the Partial Derivative method has 
been known as poor robustness when dealing with highly correlated variables. Since the Partial 
Derivative method can be depended on any of the highly correlated variables, the results may vary 
depending on which variable is chosen, leading to poor robustness. However, if there are no highly 
correlated variables present, the Partial Derivative method can still be considered a good option.  

Additionally, the calculation involved in the Partial Derivative method is much smaller compared 
to Forward stepwise and Backward stepwise. This computational advantage can make the Partial 
Derivative method attractive in situations where efficiency is a priority. 

Overall, the choice of variable selection method depends on the specific requirements and 
characteristics problems. If robustness is crucial and contain with highly correlated variables, it might 
be advisable to consider other methods or techniques that can handle such situations more effectively. 
Similarly, if computational efficiency is a priority and highly correlated variables are not a concern, 
the Partial Derivative method can be a suitable option. 
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3.2.3 Discussion of forward and backward stepwise 

In this section, the difference between forward and backward stepwise is discussed. Here is the 
computational experiment of three microstructural variables. 

# Forward stepwise 
# x_train = x_train[:,[1,10,11]] # Input: microstructure variable 1; MSE= 3%; 
# x_train = x_train[:,[2,10,11]] # Input: microstructure variable 2; MSE= 6%; 
# x_train = x_train[:,[3,10,11]] # Input: microstructure variable 3; MSE= 3.3%; 
 
# x_train = x_train[:,[1,2,10,11]] # Input: microstructure variable 1 & 2; MSE= 2.8%; 
# x_train = x_train[:,[1,3,10,11]] # Input: microstructure variable 1 & 3; MSE= 3%; 
# Importance rank: 1>2>3 
 
# Backward stepwise 
# x_train = x_train[:,[1,2,10,11]] # Delete: microstructure variable 3; MSE= 2.8%; 
# x_train = x_train[:,[1,3,10,11]] # Delete: microstructure variable 3; MSE= 2.95%; 
# x_train = x_train[:,[2,3,10,11]] # Delete: microstructure variable 3; MSE= 2.98%; 
 
# x_train = x_train[:,[2,10,11]] # Delete: microstructure variable 1 & 3; MSE= 6%; 
# x_train = x_train[:,[3,10,11]] # Delete: microstructure variable 1 & 2; MSE= 3.3%; 
# Importance rank: 1>2>3 
 
The forward stepwise method involved iteratively adding one microstructure variable at a time to 

the model based on its individual contribution to model fit. The observation shows that the first step 
yielded the lowest error (3%) when incorporating microstructure variable 1. Subsequent steps showed 
that the inclusion of microstructure variables 2 and 3 further reduced the error, with microstructure 
variable 1 being the most important predictor overall. Similarly, the backward stepwise method 
started with a model containing all microstructure variables and iteratively removed one variable at a 
time based on its individual impact on the model fit. We found that the first step, which involved 
removing microstructure variable 3, resulted in the lowest error (2.8%). Subsequent steps 
demonstrated that the removal of microstructure variables 2 and 1 increased the error, indicating their 
importance in the predictive model. Based on findings, microstructure variable 1 holds the highest 
predictive value among the variables considered, followed by microstructure variable 2 and then 
microstructure variable 3. These conclusions were consistent across multiple iterations, indicating the 
accuracy and stability of the forward and backward stepwise methods. The acknowledgement that the 
stability of the algorithm was assessed by examining the standard deviation of errors across iterations. 
This analysis revealed the consistency of the algorithm's performance in variable selection. However, 
it is important to note that the specific results may vary depending on the dataset and problem 
complexity. 

The similarities and differences can be summarized as follows. 
Similarities: 
Both forward stepwise and backward stepwise are repeated procedures. They involve some 

sequences of steps where the variables can be added or be removed from the equation. Based on some 
predefined standard. Moreover, both methods require a criterion for evaluating the quality of the 
model at each step.  

Differences: 
The main difference between forward stepwise and backward stepwise methods are based on the 

direction of variable selection. Forward stepwise procedure starts with empty model and gradually 
adds variables that contribute the most to the changes in the equation. In contrast, backward stepwise 
starts with a full equation that contains all of the variables that have the least impact on the model fit. 
At the same time, because of the different direction of calculation, forward stepwise tends to be 
computationally more efficient compared to backward stepwise. This is because forward stepwise 
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starts with a smaller model and gradually expands it due to evaluate fewer variables in the equation. 
In contrast, backward stepwise starts with a larger model and progressively reduces it, potentially 
requiring more computations.  

Both methods can be prone to selection bias. Forward stepwise may include variables early on that 
have a high correlation with the response variable but might not be truly significant. Backward 
stepwise may remove variables that, although individually insignificant, might have a significant 
effect in combination with other predictors. This bias can lead to overestimation or underestimation 
to the true effects of predictors. While variable selection aims to improve model performance, there 
is a risk of overfitting when the selection process is based solely on the fit to the training data. 
Including too many predictors can lead to a model that performs well on the training data but poorly 
on new, unseen data. Backward stepwise can be computationally expensive, especially with a large 
number of predictors. As it involves evaluating models with different combinations of variables, the 
computational time can increase substantially. 

Overall, the computer self-studying demonstrates the usefulness of forward and backward stepwise 
methods for variable selection, providing insights into the importance of microstructure variables in 
predicting the response variable. The findings contribute to the field by highlighting the key predictors 
and guiding future research in developing more accurate and interpretable models. 

3.2.4 Summary 

The Forward Stepwise and Backward Stepwise methods share certain similarities and have some 
distinct differences. In terms of advantages, both Forward Stepwise and Backward Stepwise provide 
a systematic approach to variable selection, allowing for the identification of important predictors in 
a regression model. They can be particularly useful when dealing with a large number of potential 
variables. In summary, the Forward Stepwise and Backward Stepwise methods offer a systematic 
approach to variable selection, providing reliable results and comparable performance. They differ in 
terms of computational requirements, with Backward Stepwise involving slightly more calculations. 
The Partial Derivative method offers computational efficiency but suffers from poor robustness when 
highly correlated variables are present. In conclusion, to choose the most suitable method, it is 
essential to consider the specific characteristics of the dataset, such as the presence of correlations, 
the desired level of computational efficiency, and the importance of stability in the variable selection 
process. 

4. Conclusion 

In the present study, three variable importance evaluation methods based on ANN are fully 
discussed. The microstructural variables of single-crystal alloys are taken as a test example. The study 
shows several conclusions for the future application of those methods, as 

 Forward Stepwise and Backward Stepwise methods offer a systematic approach to variable 
selection, providing more reliable and stable results than partial derivative. 

 In terms of computational expense, Backward stepwise involving slightly more calculations than 
Forward stepwise. Partial derivative method is the most efficient one. 

 Partial Derivative method has poor robustness when dealing with highly correlated variables. 
However, if there are no highly correlated variables present, the Partial Derivative method can 
still be considered a good option. 

 The results in this study can provide a basis for future application in microstructural parameter 
selection. 
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