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Abstract. Some partial differential equations appear in many application fields. Therefore, the
discussion of numerical solutions of those partial differential equations using numerical methods
becomes a valuable and important issue in numerical simulation. In numerical methods, the
wavelet-collocation method has been frequently developed for solving PDEs, and the algorithm has
yielded substantial results. However, theoretical research of the numerical solution has been rarely
discussed yet. In this paper, the numerical solution of convective diffusion equations using the
wavelet-collocation method is established, and its existence and uniqueness are derived.
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1. Introduction
Some partial differential equations, such as convection diffusion equations [1], Helmholtz

equations [2,3], appear in many application fields. For instance, convectio diffusion equations have
been frequently used in electronic science, environmental science, and hydrodynamics, while
Helmholtz equations have been widely used for analyzing acoustics, the vibration of membranes
and other structures, wave scattering, electromagnetic fields. Consequently, the study of numerical
solutions of those partial differential equations using numerical methods becomes a valuable and
important issue in numerical simulation.

In numerical methods, the wavelet-collocation method has been frequently developed for solving
PDEs, and the algorithm has yielded substantial results [4-6]. To our best knowledge, theoretical
research of the numerical solution has been rarely discussed yet [7]. In order to improve the
efficiency of existing wavelet collocation algorithms and develop more efficient wavelet collocation
methods, some new wavelet-collocation methods can be constructed and introduced. Moreover, as
the existence and uniqueness theory, it is the tool that leads us to infer that there exists only one
numerical solution to PDEs [8]. Therefore, it is significant to develop the theoretical study of the
numerical solution of PDEs.

2. Numerical solutions of convective diffusion equations
Here we consider the convective diffusion equation as follows:

2

0

0

( ) ( ) ( ) , , 0,

( ,0) , ,
( , ) , , 0,

vc b v a v f D t
t

v v D
v t f D t

        
 

   


x x x x

x x
x x




(1)

where a(x)  a0  0, ( , )Tx yx , D is the boundary of the bounded region D.
Let ( ) ( )jv vx x , we have an approximation as follows:
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where 1 2 1 2, , ( , )j n n j n nv x y  , ( , )Tx yx , m D D x  , 1 2 1 2 1 2, , , , , ,( ) ( , ) ( ) ( )j n n j n n j n j nx y x y    x [7], and m
= 0, 1, 2,

2, 2 (2 1) (2 1)j j j     .
By (1) and (2), we have
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where tn = nt, t > 0, and 1 2 1 2, , , , ( )j n n j n n m  x x .
Now, we define the matrice as follows:
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Then, at time t = tn, (3) can be expressed a matrix equation as follows:
A   (4)

Regarding (4), we have the theorem as follows:
Theorem. If [ ]jF  is almost everywhere larger than 0, the matrix equation A   has a unique

numerical solution, where the basis function j is symmetrical, and [ ]jF  is Fourier transform.
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Thus A is definite. Hence, | | 0A  .
Now, substitute  into Equation (2), we can achieve a numerical solution of (1) at time t = tn.
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3. Some examples and numerical analysis
Example 1

Consider 1-dimensional problems:
2
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where
310( , ) (1 )tv x t e x x


  , which is the analytical solution of (6). t > 0, and D = [0,2]. f, 0v , 1g

and Ng are satisfied by the analytical solution. j is the Quasi-Shannon scaling function. The
error estimation of the algorithm is carried out with L2-norm, the space step h = 1/2j, and t = 0.01.
The numerical results of the wavelet-collocation algorithm are shown in Table 1.

Table 1. The numerical results of(6)
t Calculation Error
t = 0.3 5.8163e-004
t = 0.6 1.9291e-004
t = 1.2 3.7309e-004
t = 8 4.7321e-004

From calculation error, it is seen that wavelet-collocation method for 1-dimensional equations is
feasible, and the algorithm achieves satisfactory convergence results.

Simultaneously, the finite element method (FEM) [7] is used for solving Example 1, and the
numerical solutions of the FEM are shown in Fig. 3.2.

First, from Fig.3.1-Fig.3.2 it is seen that the algorithm of the paper achieves satisfactory results,
while the FEM has similar convergent results. Second, we summarize the analysis indexes of the
two algorithms regarding calculation error and computation time as follows:

Table 2. Comparison of the numerical results

In Table 2, it is seen that the wavelet-collocation method requires less computation time, and it
produces less error. Therefore, when compared to the FEM, the wavelet-collocation method
achieves much better results.

Example 2

Consider 2-dimensional problems:
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where
2( , , ) sin( )sin( )v x y t t x y  , which is the analytical solution of (7). t > 0, and D =

[0,1][0,1]. f, 0v and g are satisfied by the analytical solution. j is the Quasi-Shannon scaling

t Relative Conditions The wavelet-collocation
method FEM

0.5 Calculation Error 1.5710e-004 4.2299e-004
Computation Time (s) 0.407000 0.422000

2 Calculation Error 1.6011e-004 4.5139e-004
Computation Time (s) 1.109000 1.203000

10 Calculation Error 1.6021e-004 4.5224e-004
Computation Time (s) 5.2030000 6.047000
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function. The error estimation of the algorithm is carried out with L2-norm, the space step h = 1/2j,
and t = 0.01. The numerical results of the algorithm are shown in Figure 3.3- Figure 3.6 and Table
3.

Table 3. The numerical results of (7)
t Calculation

Error t Calculation
Error

t = 0.2 1.7582e-003 t=0.2
5 1.6160e-004

t = 0.6 1.4433e-003 t =
0.7 2.9568e-004

t =1.2 1.2832e-003 t =1.3 2.2334e-004

t = 6 1.7305e-003 t =
6.5 1.4311e-004

From Figure 3-Figure 6 and Table 3, it is seen the wavelet-collocation method for 2-dimensional
equations is feasible, and the algorithm achieves much higher accuracy.

Fig 1 Numerical solution of this

Fig 2 Numerical solution of FEM
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Fig 3 Numerical solution (t = 0.2)

Fig 4 Calculation error (t = 0.2)

Fig 5 Numerical solution (t = 0.6)
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Fig 6 Calculation error (t = 0.6)

4. Conclusions
The existence and uniqueness theory of the numerical solution of convective diffusion equations

is established and discussed. By the theory in this paper, it is easy to verify the solvability of
convective diffusion equations using the wavelet-collocation method. Therefore, the discussion of
the numerical solution is valuable for developing wavelet-collocation methods.
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