The number of $8 \mathrm{n}+1$ primes compare with $8 \mathrm{n}-1$ primes

Mi Zhou
19920626@163.com

Abstract

There is a phenomenon in mathematics: there is a phenomenon that before a natural number K, primes of the form $4 n+1$ do not appear more frequently than $4 n-1$ primes; Beyond k, between k and $k+k^{\prime}$, the above phenomenon is reversed, the frequency of $4 n+1$ primes is not less than $4 n-1$ primes; After exceeding $k+k^{\prime}$, between $k+k$ 'and $k+k^{\prime}+k$ ', it is reversed again \qquad The J.E. Littlewood proved the first stage of the phenomenon: primes of the form $4 n+1$ appear no more frequently than $4 n-1$ primes before a natural number k. In this paper used a more easy method and directly prove the phenomenon very shortly, provides a theoretical proof for this description.This method is more easy directly and elementary than Littlewood' ,and It can help people understand this phenomenon better, and at the same time, it provides a good example for the optimization of number theory research methods and the use of some elementary methods to study mathematical problems. At the same time, there is a generalization conjecture: before a natural number K , which of $8 \mathrm{n}+1$ and $8 \mathrm{~N}-1$ primes appear more frequently? The conjecture remains unsolved. Littlewood proved the occurrence frequency theorem of $4 n+1$ primes and $4 N-1$ primes, and this paper also gave the proof, the method is different from Littlewood, but he was the first; However, for $8 \mathrm{n}+1$ primes compare with $8 n-1$ primes, we prove for the first time that the result is same as $4 n+1$ primes compare with $4 n-1$ primes.

Keywords: Number theory, $P=4 n \pm 1, P=8 n \pm 1$.

1. Introduction

American Mathematics Monthly[1] published an article titled "Prime Number Races"[2], which introduced a mathematical conjecture: The numbers of primes of the form of $4 n+1$ and $4 n-1$ which one is more?

We use a table in the article "Prime Number Races" :
Table 1. The number of the form $4 n+1$ primes and $4 n-1$ primes up to x.

x	Number of primes $4 \mathrm{n}-1$ up to x	Number of primes $4 \mathrm{n}+1$ up to x
100	13	11
200	24	21
300	32	29
400	40	37
500	50	44
600	57	51
700	65	59
800	71	67
900	79	74
1000	87	80
2000	155	147
3000	218	211
4000	280	269
5000	339	329
6000	399	383
7000	457	442
8000	507	499
9000	562	554
10,000	619	609
20,000	1136	1125
50,000	2583	2549
100,000	4808	4783

Theorem (J.E. Littlewood[3], 1914). There are arbitrarily large values of x for which there are more $4 \mathrm{n}+1$ primes up to x than $4 \mathrm{n}-1$ primes.

This is clearly a very low percentage, but it is not evident from the limited data available
Tends to zero. A few years ago Richard Guy published a wonderful article in the MONTHLY entitled "The Law of Small Numbers" [4]. In the article, Guy points out several fascinating phenomena that are "obvious" for small integers but disappear when studying large integers.

At the same time, there is a generalization conjecture: before a natural number K , which of $8 n+1$ and $8 n-1$ primes appear more frequently? We proved for the first time that the result is same as $4 n+1$ primes compare with $4 n-1$ prime.

2. reasoning process

Lemma 1: If $2 \mathrm{~N} \neq 2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$, then $2 \mathrm{~N}+1$ is a prime number[5]
Prove: If $\mathrm{N}=2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$, then $2 \mathrm{~N}+1=2(2 \mathrm{mn}+\mathrm{m}+\mathrm{n})+1=4 \mathrm{mn}+2 \mathrm{~m}+2 \mathrm{n}+1=(2 \mathrm{~m}+1)(2 \mathrm{n}+1)$, so $2 \mathrm{~N}+1$ is a composite number. If $\mathrm{N} \neq 2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$, then $2 \mathrm{~N}+1 \neq(2 \mathrm{~m}+1)(2 \mathrm{n}+1), 2 \mathrm{~N}+1$ is a prime number.

Lemma 2: If $N \neq 8 a b+6 a+2 b+1,2 N+1$ is a prime number
Prove: If $2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$ is odd number,
Make $m=2 a, n=2 b+1,2 m n+m+n=8 a b+6 a+2 b+1$, so if $N=8 a b+6 a+2 b+1$,
$\mathrm{N}=2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$, according to Lemma 1 , get $2 \mathrm{~N}+1$ is a composite, if $\mathrm{N} \neq 2(4 \mathrm{ab}+3 \mathrm{a}+\mathrm{b})+1$, then $2 \mathrm{~N}+1$ is a prime.

Lemma 3: If $\mathrm{N}=8 \mathrm{ab}+2 \mathrm{a}+2 \mathrm{~b}, 2 \mathrm{~N}+1$ is a composite; If $\mathrm{N}=8 \mathrm{ab}+6 \mathrm{a}+6 \mathrm{~b}+4$,so $2 \mathrm{~N}+1$ is a composite.
Prove: For $2 m n+m+n$ is even number, let $m=2 a, n=2 b, 2 m n+m+n=2(2 a)(2 b)+2 a+2 b=8 a b+2 a+2 b$, so if $\mathrm{N}=8 \mathrm{ab}+2 \mathrm{a}+2 \mathrm{~b}, \mathrm{~N}=2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$, according to Lemma 1 , so $2 \mathrm{~N}+1$ is a composite, if $\mathrm{N} \neq 8 \mathrm{ab}+2 \mathrm{a}+2 \mathrm{~b}, 2 \mathrm{~N}+1$ is a prime number.

For $2 m n+m+n$, let $m=2 a+1, n=2 b+1,2 m n+m+n=8 a b+6 a+6 b+4$, so if $N=8 a b+6 a+6 b+4$, $\mathrm{N}=2 \mathrm{mn}+\mathrm{m}+\mathrm{n}, 2 \mathrm{~N}+1$ is a composite number, if $\mathrm{N} \neq 8 \mathrm{ab}+6 \mathrm{a}+6 \mathrm{~b}+4,2 \mathrm{~N}+1$ is a prime number.

Theorem: For $8 \mathrm{n}+1$ primes compare with $8 \mathrm{n}-1$ primes, the result is same as $4 \mathrm{n}+1$ primes compare with $4 \mathrm{n}-1$ primes.

Prove: $4 \mathrm{n}-1=2(2 \mathrm{n}-1)+1,2 \mathrm{n}-1$ is odd numb; $4 \mathrm{n}+1=2(2 \mathrm{n})+1,2 \mathrm{n}-1$ is even number. According to Lemma $2,2 \mathrm{mn}+\mathrm{m}+\mathrm{n}$ is odd number, let $\mathrm{m}=2 \mathrm{a}, \mathrm{n}=2 \mathrm{~b}+1$, then $2 \mathrm{mn}+\mathrm{m}+\mathrm{n}=8 \mathrm{ab}+6 \mathrm{a}+2 \mathrm{~b}+1$; According to Lemma $3,2 m n+m+n$ is even number, let $m=2 a, n=2 b$, then $2 m n+m+n=8 a b+2 a+2 b$, let $m=2 a+1, n=2 b+1$, then $2 m n+m+n=8 a b+6 a+6 b+4$.

Use N1, N2 and N3 to represent the set of positive integers satisfying the following conditions respectively.
$8 a b+2 a+2 b \quad$ N1
$8 a b+6 a+6 b+4 \quad$ N2
$8 a b+6 a+2 b+1$ N3
There are more composite numbers of the form as $2(2 n)+1$ than the form of $2(2 n-1)+1(N 1+N 2>$ N3), that is, there are more $4 n+1$ composite numbers than $4 n-1$ composite numbers, so before a number K, the number of $4 n+1$ primes is less than $4 n-1$ primes.

Note: For conclusion 1, it should be noted that N1, N2 and N3 have their own repeats, For $8 a b+2 a+2 b, 8 a b+6 a+6 b+6$ and $8 a b+6 a+2 b+1$, As the values become larger and larger, their own repeats become more and more. Therefore, before the repetition degree does not exceed the difference in the number of sets, that is, before a natural number $\mathrm{k}, 4 \mathrm{n}+1$ primes occur no more frequently than $4 \mathrm{n}-1$ primes. The the first stage of the conjecture introduced in the introduction is proved.

Also there is an unsolved conjecture : $8 \mathrm{n}+1$ of primes and $8 \mathrm{n}-1$ of primes which one is more, before a large number k ?
$8 \mathrm{n}+1=2(4 \mathrm{n})+1,8 \mathrm{n}-1=2(4 \mathrm{n})-1$, for $2 \mathrm{~N}-1$ is a prime, then N must meet $\mathrm{N}=2 \mathrm{mn}+\mathrm{m}+\mathrm{n}+1$, is also: $\mathrm{N}=$
$8 a b+2 a+2 b+1$

$$
8 a b+6 a+6 b+5
$$

$$
8 a b+6 a+2 b+2
$$

For $4 n$ is even number,so $8 n+1=2(4 n)+1,4 n$ must meet $8 a b+2 a+2 b$ and $8 a b+6 a+6 b+4,8 n-1=2$ (4n) -1 ,this $4 n$ must meet $8 a b+6 a+2 b+2$, due to $8 a b+2 a+2 b<8 a b+6 a+2 b+2$,so the $4 n$ that can be expressed as $8 a b+2 a+2 b$ and $8 a b+6 a+6 b+4$ are more than $8 a b+6 a+2 b+2$.Even numbers of $4 n$ or not 4 n of $8 \mathrm{ab}+2 \mathrm{a}+2 \mathrm{~b}$ is equall ,so for $8 a b+6 a+2 b+2$ is also equall (reason: $8 a b+6 a+2 b+2=8 a b+2 a+2 b+4 a+2$).

Note: For conclusion 2, it should be noted that $8 a b+2 a+2 b, ~ 8 a b+6 a+6 b+4$ and $8 a b+6 a+2 b+2$ also have their own repeats, As the values become larger and larger, their own repeats become more and more. Therefore, before the repetition degree does not exceed the difference in the number of sets, that is, before a natural number $\mathrm{k}, 8 \mathrm{n}+1$ primes occur no more frequently than $8 \mathrm{n}-1$ primes.

3. Conclusion

For $8 \mathrm{n}+1$ primes compare with $8 \mathrm{n}-1$ primes, the result is same as $4 \mathrm{n}+1$ primes compare with $4 \mathrm{n}-1$ primes.

Acknowledgments

The author give thanks to some related professors, and sincerely hope every academic workers can have some satisfied achievements.

Reference

[1] American Moonthly, baidubaike, https://mbd.baidu.com/ma/s/IafFtz71
[2] A.Granville and G,Martin Prime Race,American moonthly.Janu.2006.
[3] Littlewood, baidubaike, https://mbd.baidu.com $/ \mathrm{ma} / \mathrm{s} / \mathrm{AB} 1 \mathrm{TjFjW}$
[4] R. K. Guy, The strong law of small numbers, this MONTHLY 95 (1988) 697-712.
[5] Chandra matrix, baidubaike, https://mbd.baidu.com/ma/s/3Sd2XK6Q

