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Abstract. Self-compacting concrete (SCC) has unique properties that make it a promising
alternative to traditional concrete. However, its prediction and design remain challenging due to the
complex interaction of multiple factors. Traditional methods are limited in scope, and often
inaccurate. This study presents a multi-objective predicting and evaluating model for SCC using
machine learning techniques, particularly random forest algorithm. The model predicts flowability,
mechanical property, and durability using nine critical features. The dataset used in this study
consisted of 376 samples, and the model achieved high accuracy for predicting all three
performance indicators, with R2 values of 0.94 for compressive strength, 0.92 for slump flow, and
0.94 for rapid chloride permeability. The importance analysis results suggest that the weight of
binder and sand are the two most critical factors that affect SCC properties. This approach provides
a valuable tool for engineers and researchers in the field of concrete science and technology,
improving the quality and durability of concrete structures.

Keywords: Self-compacting concrete; Machine learning; Random Forest; Workability; Mechanical
strength; Durability.

1. Introduction
Self-compacting concrete (SCC) has emerged as a promising alternative to traditional concrete

due to its unique properties, including high flowability, excellent homogeneity, and improved
constructability [1,2]. SCC is particularly suitable for complex shapes and reinforced concrete
structures where traditional concrete placement is challenging [3-5]. However, predicting and
designing the performance of SCC remains a complex and challenging task due to the complex
interaction of multiple factors, such as the properties of the materials, the mixing process, and the
environmental conditions. Traditional methods of predicting the performance of SCC are based on
empirical relationships that rely on limited data and are often inaccurate. Moreover, these models
are often limited in scope, focusing on a single performance indicator, such as compressive strength,
and do not take into account other critical factors, such as durability and workability. These
limitations hinder the development of accurate and reliable SCC performance prediction models,
which can lead to suboptimal designs, increased costs, and reduced durability of concrete structures.

In recent years, machine learning techniques have emerged as a promising approach for the
development of accurate and reliable prediction models [6]. Machine learning algorithms have the
ability to analyze large datasets and discover complex patterns that may not be evident using
traditional methods. By leveraging the power of machine learning, it is possible to develop accurate
and reliable models that can take into account multiple performance indicators and consider the
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complex interaction between various factors [6]. In the realm of concrete science, various
researchers have investigated the use of machine learning algorithms for predicting the properties of
different types of concrete. For instance, Naseri et al. [7] developed an intelligent mixture design
method for sustainable concrete by using multiple algorithms, including artificial neural network
(ANN) and support vector machine (SVM), to establish a compressive strength prediction model.
Furqan et al. [8] developed ensemble models and individual models to predict the strength of
high-performance concrete (HPC), with random forest (RF) demonstrating the most robust
performance among the models, achieving a coefficient of determination (R2) of 0.92. Despite the
success of various machine learning models in predicting the properties of concrete, there has been
limited research on the use of such models for SCC prediction. However, Mucteba et al. [9]
developed an ANN model that efficiently predicted the compressive strength of SCC, with an R2 of
up to 0.95. Similarly, Mohammed et al. [10] developed an SVM model that predicted the fresh
properties of SCC with a low root mean square error (RMSE) of 26.9 mm. Prasenjit et al. [11]
compared the accuracy of different models, including support vector regression (SVR), ANN, and
multivariable regression analysis (MVR), for predicting the fresh and hardened properties of SCC
and found that SVR outperformed the other models in terms of accuracy. However, prediction
methods for the durability of SCC have not been reported, and critical factors such as cement
strength grade, maximum aggregate particle size, and environmentally friendly alternative
cementitious materials, such as limestone powder, have not been considered.

This study aimed to develop a multi-objective predicting and evaluating model for SCC using
machine learning techniques. Specifically, this study used the RF algorithm, a popular machine
learning algorithm, to predict three key performance indicators of SCC: flowability (characterized
by slump flow (SF)), mechanical property (characterized by 28-day compressive strength (28-day
SC)), and durability (characterized by 28-day rapid chloride permeability (28-day RCP)). The
model considered nine features, including the cement grade (CG), the weight of cement (C), the
weight of fly ash (FA), the weight of limestone powder (LP), the weight of sand (S), the weight of
coarse aggregate (CA), the maximum diameter of aggregate (MAXD), the ratio of water to binder
(W/B), and the ratio of superplasticizer to binder (SP/B). The proposed approach has several
advantages over traditional methods of SCC performance prediction. Firstly, it can provide accurate
and reliable predictions of multiple performance indicators, which can facilitate the design of SCC
material that meet the required performance specifications. Secondly, the model can take into
account the complex interaction between various factors, which can help to identify the optimal mix
design and improve the durability of concrete structures. Finally, the model can be easily updated
with new data, which can improve its accuracy and reliability over time.

The development of accurate and reliable SCC performance prediction models is critical to
improving the quality and durability of concrete structures. This study presents a comprehensive
approach to SCC performance prediction and evaluation using machine learning techniques, aiming
to provide a valuable tool for engineers and researchers in the field of concrete science and
technology.

2. Methods
2.1 Overview

The present study aimed to investigate the potential of using machine learning algorithms for
predicting and evaluating the performance of SCC. To achieve this objective, this study employed
the RF algorithm to develop an artificial intelligence (AI)-guided multi-objective prediction and
evaluation model that takes into account nine different features and three key performance
indicators of SCC, including flowability (characterized by SF), mechanical property (characterized
by 28-day SC), and durability (characterized by 28-day RCP). The methodology for developing the
model was divided into three main stages, starting with the data collection phase, followed by
model training and model evaluation.
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During the data collection phase, a large dataset of SCC properties and characteristics were

gathered from different sources. This dataset was then preprocessed to eliminate any outliers or
missing values, ensuring that the data was of high quality and suitable for use in model training.
Subsequently, the preprocessed dataset was divided into training and testing sets, with the former
used for training the model and the latter for evaluating its performance.

The model training stage involved developing an optimized RF algorithm-based model that
could effectively predict and evaluate the performance of SCC. The RF algorithm was selected due
to its ability to handle high-dimensional datasets with numerous features and its high accuracy in
predicting complex relationships between variables. During model training, various parameters and
hyperparameters of the algorithm were fine-tuned to obtain the best possible model performance.

Finally, the model evaluation stage was conducted to assess the accuracy and reliability of the
developed model. The performance of the model was evaluated using various metrics, such as the
R2, mean squared error (MSE), RMSE, and mean absolute error (MAE). These metrics allowed us
to compare the model's predictions with the actual experimental results and determine the model's
overall accuracy in predicting SCC performance.

Overall, the developed AI-guided multi-objective prediction and evaluation model has the
potential to become a valuable tool for the construction industry. By providing accurate and reliable
predictions of SCC performance, this model can assist engineers and designers in developing more
durable and sustainable concrete structures.

2.2 Random Forest
The RF algorithm is a popular machine learning technique that is well suited for regression and

classification tasks. The algorithm works by constructing an ensemble of decision trees, each of
which is trained on a random subset of the data. The final prediction is then made by averaging the
predictions of all the decision trees in the ensemble. This approach helps to reduce overfitting and
improve the accuracy and robustness of the model. In this study, we used the RF algorithm to
predict the three key performance indicators of SCC [12, 13]. The Conceptual diagram of RF
algorithm is shown in Fig. 1.

Fig. 1 Conceptual diagram of RF algorithm

2.3 Model evaluation
To evaluate the performance of the developed model, we used several metrics, including MAE,

MSE, RMSE, and R2. The MAE measures the average absolute difference between the predicted
values and the actual values, while the MSE measures the average squared difference between the
predicted values and the actual values. The R2 measures the proportion of variance in the dependent
variable that is explained by the independent variables. These metrics were used to assess the
accuracy, precision, and reliability of the developed model. The equations for these parameters are
shown as Eq. (1) ~ Eq. (4):
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where n is the total number of instances; �'� and �� are the predicted and actual outputs; ��� is
the mean values of the actual outputs.

3. Data collection
The data used in this study were collected from international journals [14-35] and databases

related to SCC. The dataset consisted of 376 samples, with each sample representing a unique
combination of the nine features and object. The features included cement grade (CG), the weight
of cement (C), the weight of fly ash (FA), the weight of limestone powder (LP), the weight of sand
(S), the weight of coarse aggregate (CA), the maximum diameter of aggregate (MAXD), the ratio of
water to binder (W/B), and the ratio of superplasticizer to binder (SP/B). The performance
indicators included SF, 28-day SC, and 28-day RCP. The Statistical values of the dataset for the
three SCC properties prediction are shown in Table 1 to Table 3.

The data were preprocessed to remove any outliers or missing values. The dataset was then
randomly split into a training set (90%) and a testing set (10%) for model training and evaluation.

Table 1. Statistical values of the dataset for prediction of slum flow
Feature C

(Kg/m3)
CG

(MPa)
FA

(Kg/m3)
LP

(Kg/m3) W/B S
(Kg/m3)

CA
(Kg/m3)

MAXD
(mm) SP/B SF

(mm)

count 130 130 130 130 130 130 130 130 130 130

mean 314.35 43.27 122.72 33.49 0.39 846.43 779.95 17.75 0.0069 661.7
5

std 82.77 2.68 85.03 82.41 0.10 90.73 83.88 1.48 0.0053 60.16

min 150.00 42.50 0.00 0.00 0.23 562.00 500.00 16.00 0.0000 520.0
0

25% 250.00 42.50 66.00 0.00 0.31 808.50 773.00 16.00 0.0020 625.0
0

50% 312.50 42.50 130.00 0.00 0.35 866.50 800.00 19.00 0.0085 650.0
0

75% 380.00 42.50 168.75 0.00 0.45 899.75 836.50 19.00 0.0119 710.0
0

max 500.00 52.50 350.00 330.00 0.65 1050.00 914.90 19.00 0.0170 790.0
0

Table 2. Statistical values of the dataset for prediction of 28-day SC

Feature C
(Kg/m3)

CG
(MPa)

FA
(Kg/m3)

LP
(Kg/m3) W/B S

(Kg/m3)
CA

(Kg/m3)
MAXD
(mm) SP/B

28-day
SC

(MPa)

count 146 146 146 146 146 146 146 146 146 146

mean 277.25 44.28 135.10 32.25 0.47 844.33 805.51 18.78 0.0045 40.75

std 69.79 3.84 84.74 81.11 0.13 116.69 96.58 0.79 0.0033 14.71

min 150.00 42.50 0.00 0.00 0.23 478.00 500.00 16.00 0.0000 10.20
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25% 220.00 42.50 60.00 0.00 0.36 772.75 773.00 19.00 0.0020 28.50

50% 255.00 42.50 160.00 0.00 0.45 854.50 837.00 19.00 0.0035 39.70

75% 325.00 42.50 184.50 0.00 0.55 916.00 850.00 19.00 0.0050 51.65

max 500.00 52.50 350.00 330.00 0.85 1079.00 923.00 19.00 0.0170 73.50

Table 3. Statistical values of the dataset for prediction of 28-day RCP

Feature C
(Kg/m3)

CG
(MPa)

FA
(Kg/m3)

LP
(Kg/m3) W/B S

(Kg/m3)
CA

(Kg/m3)
MAXD
(mm) SP/B

28-day
RCP

(Coulombs)

count 100 100 100 100 100 100 100 100 100 100

mean 372.02 48.60 78.85 13.92 0.40 810.25 809.72 14.85 0.0098 2319

std 92.39 4.90 96.87 41.44 0.09 146.93 105.36 3.65 0.0064 1572

min 135.00 42.50 0.00 0.00 0.08 375.20 526.20 10.00 0.0000 205

25% 325.00 42.50 0.00 0.00 0.35 722.30 761.75 12.50 0.0050 1141

50% 366.50 52.50 57.80 0.00 0.40 828.70 800.00 16.00 0.0080 2071

75% 436.79 52.50 129.00 0.00 0.45 912.25 862.93 16.75 0.0132 3146

max 600.00 52.50 350.00 175.00 0.57 1032.50 1062.00 20.00 0.0324 6900

4. Results and discussions

4.1 Flowability prediction
The SF of SCC is a measure of its workability, or how easy it is to place and compact the

concrete. It is an essential property of SCC, as it affects the ease of construction, transportation, and
casting. Therefore, accurate prediction of SF is crucial in optimizing the mix design of SCC and
ensuring its successful application.

(a) (b)
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(c) (d)

Fig. 2Model results vs. experimental observations for SF model: (a) – (b) training set; (c) – (d) test
set

Following a comprehensive 10-fold cross-validation, the SF RF model's hyperparameters,
namely n_estimators, max_features, and max_depth, were optimized to 610, 2, and 89, respectively.
Table 4 provides a summary of the statistical performance of the proposed SF RF model, while the
comparison between the model's prediction results and experimental observation results are
illustrated in Fig. 2. The results from both Fig. 2 and Table 4 demonstrate the model's high R2

values for both the training data (0.93) and the testing data (0.94), which indicate the model's strong
correlation with the experimental observations in both training and testing sets. Additionally, the
satisfactory scores and similarity of the training and testing sets highlight the RF model's ability to
capture the complex mapping relationship between the features and SF while demonstrating
impressive generalization ability. The proposed SF RF model presents a promising approach to
predicting SF and holds great potential for further development and practical applications in the
field. Overall, the findings of this study contribute to the development of accurate and reliable
predictive models for SF in various applications.

Table 4. Statistical performance of proposed SF RF model
Items R2 MAE (mm) MSE (mm) RMSE (mm)

Test set 0.94 8.4 151.8 12.3

Training set 0.93 9.0 249.5 15.8

4.2 Strength prediction
The compressive strength of SCC is an important mechanical property that determines its

load-bearing capacity and overall structural performance. Therefore, the accurate prediction of
28-day SC is crucial for assessing the quality and reliability of SCC in various applications.

(a) (b)
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(c) (d)
Fig. 3Model results vs. experimental observations for 28-day SC RF model: (a) –

(b) training set; (c) – (d) test set
To evaluate the model's performance, a 10-fold cross-validation was conducted, which resulted

in the determination of the optimal values for n_estimators, max_features, and max_depth as 580, 2,
and 69, respectively. These values were used to train the 28-day SC RF model, which was then
evaluated by comparing its prediction results with experimental observation results. Fig. 3 displays
the comparison between the model prediction results and the experimental observation results.
Table 5 provides a summary of the statistical performance of the proposed 28-day SC RF model.
The data points are mainly distributed within their boundaries, indicating a high degree of accuracy
for the model. Furthermore, the high R2 for both the training data (0.97) and the testing data (0.92)
confirmed the strong correlation between the model predictions and experimental observations.
These results demonstrate the RF model's ability to effectively capture the complex mapping
relationship between the nine features and the 28-day SC, as well as its satisfactory generalization
ability across both the training and testing sets. The model's accuracy and generalization ability
make it a valuable tool for predicting and evaluating the compressive strength of SCC, which can
assist in optimizing its mix design and ensuring its long-term durability.

Table 5. Statistical performance of proposed 28-day SC RF model
Items R2 MAE (MPa) MSE (MPa) RMSE (MPa)

Test set 0.92 2.6 11.7 3.4

Training set 0.97 1.8 5.6 2.4

4.3 Durability prediction
The durability of SCC is of paramount importance in construction, as it can have a significant

impact on the longevity and safety of structures. The 28-day RCP of SCC is a key indicator of its
durability, as it reflects the concrete's resistance to cracking and other forms of damage under
various environmental conditions. Therefore, accurate prediction of the 28-day RCP is critical for
ensuring the durability of SCC.

The proposed 28-day RCP RF model was evaluated for its durability prediction performance on
both the training and test sets, with a focus on its generalization ability. Fig. 4 presents a scatter plot
comparing the model results to the experimental observations. It can be observed that the majority
of the data points for both the training and test sets fall within the boundaries, indicating a high
degree of accuracy of the model. This indicates that the model is able to effectively learn the
complex mapping relationship between the input features and the 28-day RCP, and generalize well
to unseen data. Furthermore, Table 6 summarizes the statistical performance of the proposed
28-day RCP RF model. The R2 value for the test set is 0.94, indicating a strong correlation between
the model predictions and experimental observations. The MAE, MSE, and RMSE values for the
test set are 172.0, 98903.5, and 314.5, respectively, demonstrating the model's ability to accurately
predict the 28-day RCP of SCC. Similarly, for the training set, the R2 value is 0.96, and the MAE,
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MSE, and RMSE values are 204.7, 92483.9, and 304.1, respectively. These results further validate
the effectiveness of the proposed 28-day RCP RF model in predicting the durability of SCC. It can
be concluded that the proposed model not only performs well on the training data, but also
generalizes well to unseen data, indicating its strong potential for practical applications in the field
of SCC durability prediction.

(a) (b)

(c) (d)

Fig. 4Model results vs. experimental observations for 28-day RCP RF model: (a) –
(b) training set; (c) – (d) test set

Table 6. Statistical performance of proposed 28-day RCP RF model

Items R2 MAE (Coulombs) MSE (Coulombs) RMSE
(Coulombs)

Test set 0.94 172.0 98903.5 314.5

Training set 0.96 204.7 92483.9 304.1

4.4 Importance analysis
Importance analysis is a technique used to identify and rank the most important factors that

contribute to a particular outcome or result. In this study, importance analysis was performed to
determine the factors that have the greatest impact on the SF, 28-day SC, and 28-day RCP of SCC.
Fig. 5 presents the feature importance for each outcome, with the most important factors listed first.
For SF, the most important factor was W/B, followed by S and CA content. For 28-day SC, the
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most important factor was W/B, followed by S and CG. For 28-day RCP, the most important factor
was S, followed by SP/B and CA.

The results of the importance analysis suggest that the W/B is the most critical factor that affects
both SF and 28-day SC. This is because the W/B determines the amount of water needed to achieve
the desired level of workability and strength, and has a significant impact on the porosity and
hydration of the cementitious materials. For 28-day RCP, the sand content was the most important
factor, as it has a direct impact on the packing density of the concrete mix and the interparticle bond
strength. In summary, the importance analysis provides valuable insights into the factors that
influence the performance of SCC, which can help optimize the mix design and enhance the overall
quality and durability of SCC in practice.

(a) (b)

Fig. 5 Feature importance in terms of their contributions towards: (a) SF; (b) 28-day SC; (c) 28-day
RCP

5. Conclusions
This study aimed to develop a multi-objective predicting and evaluating model for SCC using

machine learning techniques. The proposed multi-objective predicting and evaluating model for
SCC can predict multiple performance indicators, including flowability, mechanical property, and
durability, using nine critical factors. This approach provides several advantages over traditional
methods, including the ability to take into account the complex interaction between various factors,
which can lead to the identification of optimal mix designs and improved durability of concrete
structures.

The dataset used in this study consisted of 376 samples, and the model achieved high accuracy
for predicting all three performance indicators, with R2 values of 0.94 for 28-day SC, 0.92 for SF,
and 0.94 for 28-day RCP.

The results of the importance analysis suggest that the W/B is the most critical factor that affects
both SF and 28-day SC. For 28-day RCP, the sand content was the most important factor.

The proposed model is a valuable tool for engineers and researchers in the field of concrete
science and technology, and it can be easily updated with new data, which can improve its accuracy
and reliability over time.
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Future work can focus on further improving the accuracy and reliability of the model by

incorporating additional factors, such as temperature and humidity, and exploring the potential of
other machine learning algorithms. Additionally, the model can be extended to predict the
performance of SCC under different environmental conditions, such as freeze-thaw cycles and
exposure to aggressive chemicals.

Overall, this study demonstrates the potential of machine learning in the development of accurate
and reliable models for predicting the performance of SCC, which can lead to the improvement of
the quality and durability of concrete structures.
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