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Abstract. We propose a variant of the randomized Kaczmarz method for solving phase retrieval
problems called randomized block Kaczmarz with heavy ball momentum (RBK-HB). It achieves
effective acceleration compared to the Kaczmarz methods by combining block and heavy ball
momentum techniques. In the theoretical part, by assuming that the loss function is strongly convex
near the true solution, the RBK-HB method converges linearly with high probability. Numerical
experiments show that compared with the Kaczmarz methods, the RBK-HB method is less sensitive
to the initial point, the number of measurements required for successful recovery is less and has a
faster convergence rate.
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1. Introduction
Phase retrieval, which aims to recover a vector from its intensity measurements, i.e., to solve a
system of phaseless equations:

�� = ��, � 2, � = 1, ⋯,�, #

Where x ∈ Cn is the signal to be recovered and �� ∈ Cn is the measurement vector. Let A ∈ Cm×n
be a matrix whose rows are ��∗ 1≤�≤� ( ∙ ∗ is a conjugate transpose of a vector) and y =
y1, …, ym T, the phase retrieval problem can be formulated as solving y = Ax 2.
The Kaczmarz method is first proposed by Kaczmarz for solving linear systems Ax = y [1]. In

the k-th iteration, the new estimate ��+1 is obtained by projecting current estimate �� onto the
hyperplane x: ��, � = �� as

xk+1 = �� +
�� − ��, �

�� 2
2 ��.

In [2], the Kaczmarz method is used to solve the phase retrieval problem for the first time. It keeps
the orthogonal projection but considers the different hyperplane x: ��, � = ��eiθk , Where
θk = ∠ ��, � , i.e. the image phase of the solution is approximated by that of the current estimate.
We propose a variant of the Kaczmarz method for phase retrieval called RBK-HB, modified to

include the block technique and a heavy ball momentum term (see Algorithm 1).

2. Randomized block Kaczmarz with heavy ball momentum method
In the k -th iteration, instead of using an individual row, we select η (η ≥ 1 ) rows randomly and
project the current estimate onto each selected row, which improves the utilization of information.
We assume measurement vectors �� ∈ Cn are normalized, and consider the following iterative
format:

x�k = xk −
α
η
i∈γk

1 −
yi

�i∗xk
�i� �i∗xk, # 1

where the elements in index set γk are chosen uniformly from 1, ⋯, m and γk = η , α is a
relaxation factor generally takes 1.
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Furthermore, we leverage heavy ball momentum term to obtain a probable acceleration:

xk+1 = x�k + β xk − xk−1 , # 2

Where β is the parameter of the heavy ball momentum term. We summarize the above in Algorithm
1.

Algorithm 1 Randomized block Kaczmarz with heavy ball momentum (RBK-HB)
Input: �0, �, �, �
For k = 0,1, …, K do

select a block of �, denoted by ���, �� = � and ��~�
��� = ∠ ��, � , � ∈ ��

Xk+1 = xk +
α
η i∈γk

yi����
�
− ��,��
�� 2

2 �i� + β xk − xk−1

End for
Output: xK

The update (2) of xk can be considered as an SGD update of step size � 2 for the following
loss function:

f x =
1
m

i=1

m

�i∗x − yi 2� .# 3

Its one-sided directional derivative at x along the direction v is given by

fv' x = lim
t→0+

f x + tv − f x
t

=
1
m

i=1

m

1 −
yi

�i∗xk
�i∗vx∗�i + �i∗xv∗�i� .

The loss function (4) and its local regularity property has been studied in [3,4], they assume

fx−z' x ≥
μ
2

f' x 2
+
λ
2 x − z 2

and only obtain the results of linear convergence in a real-valued setting.
To analyze the theoretical results in a complex setting, we assume f satisfies the local restricted

strong convexity, that is:

f x + fz−x' x +
L
n

x − z 2 ≤ f z , x ∈ B z, c0 , # 4

where B(z, c0): = {x| x − z ≤ c0} and c0 is a positive constant. This property essentially states
that the gradient of the function is well-behaved, which ensures the point in B z, c0 converges
linearly to the true solution with a high probability. Similar assumptions can be found in [5,6], but
our results are more general (when η = 1, β =0, their result is a special case of ours).

3. Main Convergence Result
Assuming (5) holds, we conclude that the RBK-HB method converges linearly with high
probability.
Theorem 1 Assume �i = 1 for all 1 ≤ i ≤ m, x is the true solution and (5) holds, the RBK-HB
method uniformly selects a block γ in each iterate, and the initilization x0 such that x0 − x ≤
c0 δ1 for some 0 ≤ δ1 ≤

1
2
. If 0 < β < min L

4nη
, 1
2
, fix ε > 0 and some q ∈ 0,1 then

xk − x 2 ≤ ε x0 − x 2

holds with probability at least 1 − �1 −
2�� 1+�

�
,where q = �1+ �12+4�2

2
, �1=

1− L
ηn+β

1−2β
, �2 =

β
1−2β

.
First, we present lemma 9 in [7], which we will use in our proof.
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Lemma 1 Let �� �≥0 be nonnegative real numbers. Fix �1 = �0 ≥ 0 and assume that �� �≥0
satisfies:

Fk+1 ≤ �1Fk + �2Fk−1, ∀ k ≥ 1,
where �2 ≥ 0, �1 + �2<1 and at least one of the coefficients �1, �2 is positive. Then the following
inequality holds for all k ≥ 1:

Fk+1 ≤ qk 1 + δ F0,

where q = �1+ �12+4�2
2

, δ = q − �1 ≥ 0 and q ≥ �1 + �2.
Now we turn to the proof of Theorem 1.
Proof 3.1. According to (2), we have

x�k − x 2

= xk − x −
1
η i∈γk

1 −
yi

�i∗xk
�i� �i∗xk 2

≤ xk − x 2 + 1
η2 i∈γk

1 − yi
�i
∗xk

�i�i∗xk 2� − 1
η i∈γk

2Re[(1 − yi
�i
∗xk

)�i� �i∗xk(xk − x)] 1
Taking the expectation of (6), we have
E x�k − x 2

= xk − x 2 +
1

η2m
�=1

�

( �i∗xk − yi)2� +
1
ηm

�=1

�

2Re[(1 −
yi

�i∗xk
)� ���i∗xk(x − xk)]

= xk − x 2 +
1
η2
f xk +

1
η fx−xk

' xk

≤ 1 − L
ηn

xk − x 2, 2
Where 2Re x = x + x∗, and the last inequality applies the assumption (5) with f x = 0 and η ≥ 1.
Together with xk+1 = x�k + β xk − xk−1 we get
E x�k − x 2

= E xk+1 − x − β xk − x + β xk−1 − x 2

= E xk+1 − x 2 − 2βE Re xk+1 − x ∗ xk − x + 2βE Re xk+1 − x ∗ xk−1 − x
+ β2 xk − x 2 + β2 xk−1 − x 2 − 2β2Re xk − x ∗ xk−1 − x

≥ 1 − 2β E xk+1 − x 2 − β xk − x 2 − β xk−1 − x 2. 3

The last inequality uses the fact that
2Re x∗y ≤ x 2 + y 2, ∀x, y ∈ Cn. 4

Combining (7) and (8) yields

E xk+1 − x 2 ≤
1− �

��+�

1−2�
xk − x 2 + �

1−2�
xk−1 − x 2, 5

when 1 − 2β > 0.

Finally, we apply Lemma 1, where the two coefficients are given by �1 =
1− �

��+�

1−2�
and �2 =

�
1−2�

> 0. Since we require �2 ≥ 0, �1 + �2<1 and at least one of the coefficients a1, a2 is positive,
thus the assumptions for Lemma 1 hold if

0 < β < min
L
4nη ,

1
2
.

Notice that we give an upbound of β by inequality scaling (9), but β could be wider by adjusting the
inequality (9). Thus, we obtain

E xk − x 2 ≤ qk 1 + δ x0 − x 2,

Where q = �1+ �12+4�2
2

, δ = q − �1 and 1 > q ≥ �1 + �2 . It follows from 0 < q < 1 that the
iterates generated from the RBK-HB method converge linearly in expectation.
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The rest of the proof follows from Theorem 3.1 and Corollary 3.2 in [8]. Fix ε > 0,0 < δ1 ≤

1
2
.

Let τ = min k: xk − x ≥ c0 , we have P τ < ∞ ≤ �0 �1 �0
2
= δ1 , and P xk − x 2 ≤

ε x0 − x 2 ≥ 1 − δ1 −
2qk 1+δ

ε
. This completes the proof.

4. Numerical experiments
In this section, we present some numerical experiments to test our method. All experiments are
performed with MATLAB on a personal computer with 2.80-GHZ CPU(Intel(R) Core(TM)
i7-1165G7) and 16-GB memory.
The Measured complex vectors �� are generated from the Gaussian distribution, that is,

��~� 0, �� + �� 0, �� . The algorithm is tested with the Gaussian model with entries of A drawn
i.i.d. from � 0, 1

2
+ �� 0, 1

2
, and the measurements y = A�� 2 . We set α = 1, n = 128 and m =

δ × n , where δ ≥ 2 . The initial point is set as �0 = �=1
� ���
�

� , where z is the unit leading
eigenvector of �=1

� ��� �r�r∗ suggested by [9]. The k-th relative error is defined by

e k =
dist xk, ��

�� ,

Where dist xk, �� = minθ∈R xk − ����� .

4.1 Convergence Rate in Different Settings.

To explore the influence of η and β on the performance of our method, we set δ = 4 . Let η ∈
{1,8}, β ∈ {0,0.5,0.9} and the maximum iteration is 100000. When η = 1 and β = 0 the RBK-HB
method is the Kaczmarz method. We find that when η takes 1, as long as β is greater than 0.5, the
algorithm will not converge. The results are shown in Figure 1.

(a) (b)
Fig. 1 Convergence rate for different η and β when n=128 and m=512. (a) The relationship between

relative error and running time; (b) The relationship between relative error and iteration.

From Figure 1, we can see that the main source of acceleration is the heavy ball momentum term
since the two block size schemes have the same decrease in each iteration and the scheme of large
block takes longer time when β takes 0. This is because η does not affect the step size of the
Kaczmarz (SGD) method, and the computational cost of each iteration increases when η gets larger.
However, blocking is necessary because only increasing β will lead to non-convergence of the
algorithm. When η takes 1 and β takes 0.5, the algorithm does not converge, while when η takes 8,
β is able to take 0.9 to achieve a half-time improvement compared with the Kaczmarz method.
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4.2 Sensitivity to initial points.
For non-convex optimization, the initialization procedure is very important and a good initial point
can prevent convergence to a local minimum. In this section, we test the sensitivity of the RBK-HB
method to initial points by using two different initializations, one is the refined initial point
mentioned at the beginning of this section, and the other is randomly generated according to the
standard Gaussian distribution. The results are shown in Figure 2.

(a) (b)
Fig. 2 Convergence rates under two different initializations. (a) The effect of β on the sensitivity of
the RBK-HB method to the initial point when η = 1; (b) The effect of β on the sensitivity of the

RBK-HB method to the initial point when η = 8.

From Figure 2, the RBK-HB method performs better for refined initialization than random
initialization. However, this difference will gradually decrease with the increase of β. When β takes
0.9, the difference between the two initializations is very small, which reminds us that β can be
appropriately increased to reduce the sensitivity of RBK-HB to the initial point.

4.3 Robustness to noise.
In practical applications, measurement noise is inevitable. In this subsection, we will test our
method's ability to resist additive noise which is modelled as follows:

�� = ��, � + �� , � = 1,⋯,�,
where �� is the Gaussian noise. The signal noise ratio (SNR) of the vector to be recovered is set to
0dB to 60dB and the maximum iteration is 30000. The results are shown in Figure 3.

Fig. 3 The relationship between SNR and relative error at different Settings.
From Figure 3, we can find that the relative error decreases steadily with the increase of SNR

under each setting. This proves that our method is robust to additive noise.
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4.4 The Recovery Probability.
The number of measurements � has a crucial influence on the phase retrieval algorithm. In this
subsection, we test the relationship between the mean recovery rate and the number of
measurements under different settings.
We set δ = 2: 0.2: 6 where ’:’ is the Matlab notation indicating that the interval is 0.2. Let η ∈

1,4 , β ∈ 0,0.2,0.5 and the maximum iteration be 20000 and 50000 respectively. An experiment
is considered successful if the relative error is less than 10−5 within the maximum iteration. We
randomly generate 100 measurement matrices and signals under each setting and repeat the
experiment 100 times, the number of successful experiments is recorded as the mean recovery rate.
The results are shown in Figure 4.

(a) (b)
Fig. 4 The relationship between the mean recovery rate and the number of measurements under
different settings. (a) The mean recovery rate of 20000 iterations; (b) The mean recovery rate of

50000 iterations.
From Figure 4, we can find that the number of measurements required for the RBK-HB method

to successfully recover a vector is smaller than the Kaczmarz method. Furthermore, this difference
is more obvious when the maximum iteration is small.
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