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Recent Advances on Video Super Resolution
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Abstract. Super-resolution(SR) reconstruction is a technique which constructs high-resolution(HR)
images/videos from low- resolution(LR) images/videos. Recently super resolution tech- niques has
been prospering rapidly and being applied in various areas. In this article we look through recent
works which made great contributions to SR, mainly on VSR. We will compare different works’
effectiveness and their unique structures, dis- cussing their pros and cons, trying to find out the
reasons why some SR approaches perform significantly better than the others and how they can be
applied to help further improve the best performance we can achieve.

Keywords: Index Terms — Image Super-resolution, Video Super-resolution, Space-time Video
Super-resolution.

1. Introduction

Super resolution can be of great use in many aspects of our lives, such as HDTV [28], medical
imaging [29], [30], satellite imaging [31], face recognition [32], surveillance [33] and so on.
Researches on image super resolution are mostly focused on improving the quality of SR pictures
and at the same time reducing its computational cost to make it more practical in real life. Video
super resolution on the other hand involves more consideration. For a video to be fluent enough for
audience to watch, it should have a good real- time performance of at least 24 fps. We all may have
seen videos after super-resolution reconstruction, but they are all made after long time of training
and processing. So in the field of video SR, what we need to achieve is both effectiveness and
efficiency. That is to say, we want to achieve better quality while at the same consuming less
resources. Instead of running on several latest GPUs, we want video SR can be processed on small
devices with little computing capability, like mobile phones. Video super-resolution, unlike image
super-resolution, is definitely not simply overlap of every frame’s restoration in the video. Both
spatial and temporal dependency relationships should be fully exploited to make restored videos
having a better performance. Through we haven’t achieved a satisfying result for everyone, luckily
many great researchers have made great contributions to the advance of this area.

As to image super-resolution, it is no exaggeration to say that it’s the foundation of video super
resolution. Currently many researches focus on making models for SISR(Single Image
Super-Resolution) training small and takes less com- putation. There are a few very classic models
[25]-[27] which guide many following newly invented models through darkness. MobileNet
already has three big versions till now. MobileNet along with its all kinds of versions can be of
further implementation in all kinds of tasks, like object detection or semantic segmentation. They
can mainly work on mobile CPUs with great efficiency, proving their practicality in various works.
[11] which improves its own structure to have bet- ter performance with significantly lower
computational cost. There are also some methods [8] which further outperforms FSRCNN with the
use of Collapsible Linear Blocks and residual connections.

On the other hand, video super-resolution generally is diffi- cult in that researchers need to
extract complicated information from video frames which has not been aligned. There are typically
two approaches for this challenge. The first one is sliding-window framework which makes use of
short-time windows with several frames to reconstruct every frame in the video. The second one is
recurrent framework. It is employed to discover the dependency relationships within a long time
period. Although the recurrent models have made a more concrete model than those sliding window
ways, their problems in long-term information transmissions and feature alignments can not be
neglected.
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As was proposed in [5], most existing video super-resolution approaches can be roughly divided
into four parts, which is propagation, alignment, aggregation, and upsampling. These four parts
BasicVSR has set made a basic pipeline for future video super-resolution works, since every aspect
of this struc- ture can be split out to make improvements on performance. In this pipeline,
propagation is used to propagate features temporally, alignment matters greatly on the spatial trans-
formation applied to misaligned features. While aggregation is employed to to combine all the
aligned features together, upsampling is the final step used to generate high resolution images with
aggregated features. While BasicVSR++ [6] is a state-of-art method making significant
improvements based on BasicVSR’s work. BasicVSR++ made further improvements by applying
second-order grid propagation and flow-guided deformable alignment to enhance recurrent network.
With these improvements, BasciVSR++ improves BasicVSR by 0.82 dB in PSNR without adding
complexity in computation.

TDAN [1] works on the feature level to align the refer- ence frame and the supporting frames, in
conjunction with deformable convolutions [4] to dynamically predict sampling parameters, thus
gaining the ability of handling videos with large motions that can’t be dealt with previously. TDAN,
due to its novel and effective architecture, became a model which inspires many later approaches,
like EDVR [3] and Zoooming Slow-Mo [2].

EDVR made further improvements on TDAN. EDVR de- vises a Pyramid, Cascading and
Deformable (PCD) alignment module and a new Temporal and Spatial Attention(TSA). fusion
module. These two new modules work together to align features and emphasize them more effectively.

Zooming Slow-Mo [2] aims at generating high-resolution slow-motion video from low frame
rate and low resolution video. In this approach, it also takes advantage of EDVR’s PCD module for
better alignment of features. Compared to current two-stage strategy for STVSR like DAIN [7] +
EDVR, Zooming Slow-Mo is not only three times faster, but also better at handling large motions
and therefore stores more information to restore more accurate images with sharper edges.

Table 1. quantitative comparison (psnt/ssim).
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All results are calculated on y-channel except reds4 [34] (rgb-channel). Red and blue colors
indicate the best and the second -best performance , respectively. The runtime is computed on an Ir
size of 180)320. a 4) upsampling is performed following previous studies. Blanked entries
correspond to results not reported in previous works .
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functionalities: 1) propagation refers to the way in which features are propagated temporally, ii)
alignment concerns on the spatial transformation applied to misaligned images/features , iii)
aggregation defines the steps to combine aligned features , and iv) upsampling describes the method
to Transform the aggregated features to the final output image. Bolded texts correspond to designs
that were reported to Achieve better performance in the literature.
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2. Evaluations and comparisons

There are many judging quality metrics that is being used nowadays, like MSE, PSNR,
MSSIM(SSIM), UQI and Sarnoff. But normally only the former three methods are used frequently.

2.1 Mse

Mse, known as the mean squared error, is the simplest and most widely used full-reference
quality metric. MSE is computed through doing the average value of squared intensity differences
of distorted and reference image pixels. The MSE for an image is computed in the following
equation:
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Fig. 2. (a) Proposed at training time contains two 5 ) 5 and m 3 ) 3 linear blocks. Two long
residuals and several short residuals over 3 ) 3 linear blocks are applied. (b) A k) k linear block
first makes use of a k ) k convolution to project x input channels to p intermediate channels. Then
these channels are projected back to y output channels via a 1 ) 1 convolution. (¢) Short residuals
can be collapsed into convolutions. (d) At inference time just contains two long residuals and m+2
narrow convolutions.
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Though MSE is mathmatically easy to compute, but the effect of its evaluation is not good.
2.2 Psnr

Psnr, known as peak signal-to-noise ratio, is evaluated based on the misses between pixels. Due
to its relative reliability compared to MSE and its convenience in computing, it has been to most
widely used method in image quality evaluation. But the weakness of PSNR lies in that it doesn’t
take human visual system into account, so the result of PSNR sometimes are not matched to human

sense visual quality.
MAX
PSNR = 20logy, ( = )

VvVMSE @)

2.3 Ssim

The inner principle of how evaluation works decides how it performs. Images we see in our daily
life are basically highly structured since their pixels tend to have relative strong dependencies on
near ones. These dependencies carry large amounts of information necessary for reconstructing
images. But approaches like PSNR and MSE evaluate images are based on Minkowski error metrics,
which focuses on calculating pixel-level signal differences, can miss so much when dis- cussing
evaluation of structure similarity.

SSIM is proposed in order to solve the problem of incon- sistency between evaluation results and
human visual sense. This approach is based on the assumption that human’s visual system highly
relies on extracted structural information from the viewing field.
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In equation (10), ux is the mean value of x, ny is the mean value of y;

So in the consideration of both accuracy and efficiency, we nowadays tend to combine PSNR
with SSIM in evaluation.

SSIM(x,y) =

3. Different architectures and their characters

3.1 Methods Used In Image Super-resolution

Image super-resolution, though quite not like video super- resolution, some of its technologies
can be implemented in VSR for processing key frames. So it’s still necessary to discuss some base
stone methods being used. Due to SR- CNN’s [9], [10] high computational cost, FSRCNN made
some improvements in redesigning its structure. Firstly, they take the original low-resolution image
as input instead of being processed by bicubic interpolation. Secondly, FSRCNN replaces
SRCNN’s non-linear mapping module by shrinking, mapping and expanding. Thirdly, FSRCNN
takes a smaller filter size and a deeper network structure. Finally, They introduced a
deconvolutional layer at the end of the network to do upsampling. Thus by improving the
limitations of SRCNN, a more efficient model for SR is devised. By re-designing the model,
FSRCNN achieves an acceleration of more than 40 times without weakening its restoration quality.

Another model which achieves great success is Collapsible Linear Blocks for Super-Efficient
Super Resolution. [8]

The SESR model, making use of Collapsible Linear Blocks model, is proposed based on the
observation that current state- of-art Single Image Super Resolution(SISR), which are mainly based
on Convolutional Neural Networks(CNNs). But CNNs has a serious problem of being
computationally very expen- sive. For example, the number of Multiply-Accumulate(MAC)
operations needed to perform upscaling is typically large. Their experiments show that even
FSRCNN, when being used in 100% utilazation, would achieve only 37 FPS on a 4- TOP/s NPU.
While other large deep networks would lead to completely impractical situations which achieves no
more than 3 FPS. To tackle these problems, SESR decides to make use of linear
overparameterization blocks which have not been proposed on super-resolution problems
beforehand.
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ExpandNets’s [14] and ACNet’s [15] success in overparam- eterizing a convolutional layer have
shown the effectiveness of it in accelerating the train of convolution networks. So SESR develops
Collapsible Linear Block to take effect of both overparameterization and residual connections for
better convergence and restoration quality for SESR tasks.

Despite of the great performance SESR has achieved, there are still many model compression
approaches can be imple- mented on SESR. There are many effective methods which will further
reduce the resources needed for computation on small devices like (1) [42]-[46]which explores
attention mechanism to find the most informative region for the best-quality reconstruction; (2)
Knowledge distillation [38] used to transfer knowledge from big teacher networks to small student
network [39]; (3) Combining lightweight residual blocks with variants of group convolution
[47]-[49]. These methods, since they are orthogonal to SESR’s compact structure, can be
implemented jointly to improve the performance.

These proposed superior models can be of important usage in real-time video super-resolution,
also inspiring new models in this area.
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Fig.7. TSA fusion for EDVR

3.2 Methods Used In Video Super-resolution

3.2.1 Methods that employ sliding-windowframeworks

Previ- ously, sliding-window approaches typically utilize optical flow between the reference
frame and every supporting frame and warp the supporting frames to achieve temporal alignment.
But a severe problem lies in this procedure. Due to the accuracy of common processing procedure,
both inaccurate optical-flow and warping strategy may lead to serious problems within the warped
supporting frames. On the other hand, precise optical- flow estimation is quite time-consuming and
performs badly in front of REDS. So later some more sophisticated designs were invented for
implicit alignment instead of traditional optical flow alignment. An outstanding model is TDAN [1].
Its advancement not only exists in the fact that it achieves a new state-of-the-art result in video
super-resolution, but also inspires many approaches coming later, such as EDVR [3] and
Zooming-Slow-Mo [2].

TDAN works on the feature level to adaptively align the reference frame and the supporting
frames, abandoning old optical flow-based approaches.It also got inspired by de- formable
convolutions [4] to dynamically predict sampling parameters, thus gaining the ability of handling
situations with large motions.

As the figure has proposed, TDAN mainly is a two level framework. The first level is a
temporally-deformable align- ment network(TDAN) aiming at aligning every supporting frames
with the reference frame. The second level is a super- resolution reconstruction network to generate
HR frame. The first level also composed of three modules: feature extraction, deformable alignment
and aligned frame reconstruction. As experiments have showed, the adaptively-learned offsets can
implicitly capture motion information and explore neighboring features for better alignment within
the same image structure. The SR reconstruction network also contains three levels, tem- poral
fusion, nonlinear mapping, and HR frame reconstruction respectively. They also employ a sub-pixel
convolution [18] as upscaling layer.

Though TDAN has so much encouraging results, it’s limita- tion lies in its light-weight
architecture with only 1.9 million parameters. Thus TDAN could fail in some cases where very
deep SISR networks like RCAN can fully do the job.

Enlightened by TDAN’s outcome, an approach called EDVR [3] made some improvements
based on the former one’s work. EDVR won the champion of NTIRE19 Chal- lenge and
outperforms the second place with huge gap. This challenging benchmark is named REDS. Two
new aspects of difficulties are raised: the first one is alignment of frames with large motions, the
second one is fusion of different frames with diverse motion and blur. To deal with these problems,
EDVR on one hand devises a Pyramid, Cascading and Deformable (PCD) alignment module and
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take advantage of deformable convolutions to laign features in a course-to- fine manner. On the
hand, EDVR propose a new Temporal and Spatial Attention(TSA) fusion module to focus attention
both temporally and spatially, achieving emphasis of important features for restoration.

It is worth mentioning that EDVR can perform in several video restoration tasks, including
super-resolution, deblurring, denoising, deblocking and so on. Take video SR as an exam- ple,
EDVR takes 2N+1 low-resolution frames as inputs and outputs a high-resolution output. Each
neighboring frame is aligned to the reference frame at the feature level by PCD alignment module.
The TSA fusion module will then fuses image information of different frames. The fused features
will then pass through a reconstruction module, which is a cascade of residual blocks. The
upsampling operation is performed at the end of the network to increase the spatial size. The
upsampling method EDVR adopted is also sub-pixel shuffling. Finally SR residual images are
directly added to upsampled images to get high-resolution frame. To further boost the performance
of their model, they adopt a two-stage strategy, cascading another EDVR with shallower depth for
the refinement of the ouput frameworks of the first stage.

The application of deformable convolution for alignment is nearly the same as those in TDAN.
But EDVR made further improvement on TDAN for better alignment in handling large motions,
with a more sophisticated design of PCD module. EDVR also applies bilinear interpolation to do
— 2 upsampling. To reduce computational complexity, the actual implement uses three-level
pyramid, each layer showed as in the figure for DCN alignment. We can also notice that a
subsequent deformable alignment is cascaded to improve the module from course to fine. This PCD
module can work without supervision or pretraining like optical flow.

The Fusion with Temporal and Spatial Attention module is raised due to the fact that: 1)
different neighbour frames are not equally informative 2 misalignment and unalignment made a bad
impact on reconstruction.As a result, dynamic aggrega- tion of neighbouring frames in pixel-level is
irreplaceable for effective fusion.
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Fig. 8. (a) Pipeline for RSDN; (b)recurrent structure-detail unit
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3.2.2 Methods that employ recurrent frameworks

Compared to temporal sliding-window approaches, recurrent methods tend to have a more
compact structure, which is more efficient in exploring temporal information. (whether
recurrent-based methods are more effective still needs to be judged) One method that needs to be
speak of is RSDN [12]. It achieves even better performance than EDVR on dataset like Vid4 and
UDMI10, though EDVR still performs better on Vimeo.

There are some novel structures which blow my mind. Instead of inputting the whole frame to a
recurrent network, RSDN disintegrate each frame into two components such as structure component
and detail component. Then these two components are processed in structure-detail block module,
which is able to ease the problem of vanishing gradient. They also make use of hidden states to
adapt to current situation since they think hidden state at time t for example, would conclude
previous information, making it better able to describe the relationship between the motion of a
certain scene and its temporal switches.

RSDN’s design of recurrent structure-detail network is its most shining spot. They think since
the structure component contains mostly low-frequency information and motion be- tween frames,
while the detail component mainly consists of high-frequency information and changes in temporal
appear- ance. These two components are quite different in reconstruc-tion process, while still
interact with each other, thus needed to be processed in different ways.

Despite RSDN’s some quite amazing new designs,Ba- sicVSR and its extension IconVSR, made
further improvement in the model’s effectiveness. Based on the fact that current

VSR methods vary greatly and turn to increasing complexity, a baseline should be set to reduce
harming on reproducibility and improvement. BasicVSR therefore made a pipeline which made
VSR’s various methods having something in common. It summarizes existing methods of VSR into
four steps: Propagation, Alignment, Aggregation and Upsampling.

BasicVSR made following researches on detailed designs of VSR. About propagation,
local-propagation, like sliding- window based approaches, would lose some performance due to
lack of consideration of further frames. While in Unidi-rectional propagation, the imbalanced
information received in different frames would result in artifacts in propagation. BasicVSR thus
adopted Bidirectional Propagation, which is able to solve upper problems. About alignment,
BasicVSR adopts optical flow of spatial alignment by warping the images on the feature level.
Recently, some researches like [40], [41] have shown the improvement with moving the alignment
from image level to feature level. About aggregation and upsampling module, BasicVSR adopted
common components of feature concatenation and pixel-shuffle.

Using BasicVSR as backbone, IconVSR further introduced two new components: Information-refill
mechanism and cou- pled propagation. IconVSR proposed an additional feature.extractor to extract
deep
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Fig. 9. Overview of BasicVSR++
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Fig. 11. (a) Information-refill module for IconVSR; (b) Coupled Propagation for IconVSR
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In this equation, E and C refer to the feature extractor and convolution layer respectively. After
this process, The refined features will then be passed on to the residual blocks for further process:

h ;-[&'ﬂ = R{b_” {I,- : EI{&' I} :I (7)

The Coupled Propagation is raised due to the reason that propagation modules are

inter-connected. So taking backward propagated information as input in forward propagation would
intuitively lead to better performance(also confirmed in exper- iments).
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Fig. 12. BasicVSR++’s improvements over BasicVSR
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BasicVSR’s work did paid back. After several months, BasicVSR++ made further improvements
by applying second -order grid propagation and flow-guided deformable alignment to enhance
recurrent network. With these few improvements, BasicVSR++ surpasses BasicVSR by 0.82 dB in
PSNR without changing the order of magnitude of parameters. The normal steps for BasicVSR++
are: For an input video, residual blocks will firstly be implemented to extract features from every
frame. Then the second-order grid propagation will propagate features which will be aligned by
flow-guided deformable alignment module later. Lastly these aligned fea- tures will be processed in
convolution and pixel-shuffling to generate the final images.

Detailed information about BasicVSR++’s two improve- ments will be shown in the following
passage: BasicVSR++ got the motivation from the good performance of bidirec- tional propagation,
so they noticed the importance of repeated refinement in propagation. To further improve the
effective- ness of backward and forward features used in propagation rather than simply taking
backward propagated information as input to forward propagation, they devised grid propagation to
repeatedly extracts information, thus improving feature effectiveness a lot. This design, shows
improving robustness and effectiveness in every sense.

For example, we make xi to be one input image, gi be the extracted feature from xi, and fi be the
feature computed at the i-th timestep in the j-th propagation branch. To compute the feature fi, we
first align fi-1 and fi-2

f;j =A (ﬁ}f-.f;f_l-ff_z-é‘i—n—l-55.—-,5—2) ; 9)
where si —i -1, si —i -2 denote the optical flows from i-th frame to the (i-1)-th and (i-2)-th

frames, respectively, and A represents flow-guided deformable alignmentl . Then the features will
be passed on to residual blocks:
fi=f+R(c(#77)): (10)
1's0 — -1=s0 — -2=s1 — -1=f-1=H=0.

where i = gi, 2 denotes the residual blocks, and ¢ denotes concatenation process.

For the Flow-Guided Deformable alignment module, unlike previous methods that directly
compute deformable convolu- tional offsets, BasicVSR++ employs flow-guided deformable
alignment to take advantage of the offset diversity created from deformable convolution. Although
deformable alignment has proved to be significantly more effective than optical flow-based
alignment, deformable alignment module may be difficult to train since offset overflow is resulted
all the time. This flow-guided deformable alignment module in conclusion have following
advantages:

First, by pre-aligning the features using optical flow, the learning offsets of CNN can be assisted.

Second, through optical flow-guided training approach, the burden in handling typical
deformable alignment’s training instability reduces greatly.

Finally, the modulation masks in deformable convolution network can act as attention maps to
weigh the contributions of different pixels, providing additional flexibility.

By ablation study, we can prove that both of these two modules can bring significant
improvement in restoration of details. And optical flow-guided deformable alignment can preserve
more detailed information. Besides, comparing to sliding-window approaches, recurrent structures
have better temporal consistency. All in all, these improvements made BasicVSR++ the new
state-of-art method.
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3.2.3 A new combining way in solving STVSR

There exists another method applied to space-time video super-resolution, which is called
Zooming Slow-Mo [2], aiming at generating high-resolution slow-motion video from low frame
rate and low resolution video. In this approach, it also takes PCD module in EDVR for deformable
alignment. Compared to current two-stage strategy for STVSR like DAIN + EDVR, Zooming
Slow-Mo is not only three times faster, but also better at handling large motions and therefore stores
more information to restore more accurate images with sharper edges. This module mainly
composed of four modules: feature extractor, frame feature temporal interpolation, deformable
ConvLSTM and HR frame reconstruction.

They first use the feature extractor to get feature maps as input for the next stage. Then the frame
feature temporal interpolation module is based on deformable sampling. The generated F1 is meant
to predict the corresponding HR frame, so it will implicitly let the offsets to capture accurate local
temporal information to cope with large motions.

Jrz—l 5 Fi—pi—1
warping

previous
feature

offset feld

Deformable convolution //

U approximated F¥
@y )
T3(Fg,d3)

offsets
offset field

Fig. 14. Frame Feature temporal interpolation for Zooming Slow-Mo

The deformable ConvLSTM is designed based on the idea that except optical flow-based
methods, most of the current methods like [3] employs many-to-one architecture for tem- poral
alignment. That means they need to process a batch of LR frames to predict only one HR frame. So
they come up with the idea that ConvLSTM can effectively ease sequence- to-sequence learning.
But vanilla ConvLSTM have the artifact that due to lack of explicit temporal alignment, it will fail
in handling large motions. So to tackle this problem, they explicitly add deformable alignment into
this ConvLSTM to enhance its ability. Finally, they reconstruct the HR Slow-Mo video sequence
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from aggregated feature maps. Totally, this one-stage method for STVSR has four times smaller
model size, making it easier and faster to train than other two-stage methods.

4. Future improvements

We can conclude from the upper approaches to find out that in video super-resolution, methods
that achieve a high performance tends to employ deformable convolution in han-dling large
motions.All the
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Fig. 15. Feature temporal interpolation for intermediate LR frames in Zooming Slow-Mo
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Fig. 16. Deformable ConvLSTM for Zooming Slow-Mo

listed methods that make use of DCN achieve better results than those that don’t. But with the
introduction of DCN networks, the calculation that needs to be done increases therewith. The DCN
based models also can be unstable in training. So when deploying DCN networks, we should
trade-off between its pros and cons.

And bidirectional propagation, have proved to be more effective in several works. Furthermore,
the works in Ba- sicVSR++ improved propagation by re-devising second-grid propagation, showing
that both forward and backward infor-mation are necessary to be made good use of in
reconstructing high-quality video frames.

On the aggregation and upsampling side, we recently have not made so much progress. These
two aspects may be the breakthroughs in the future.

The future work of super resolution should lies in achiev- ing a high-performance balance
between effectiveness and efficiency. Under the same design, networks that contains larger sizes
and more parameters usually tend to make better performance. In consequence, the cost of
calculation grows rapidly. But in the real world application of super resolution, we normally can’t
afford a very big price in calculating since practically we want the super-resolution work to be done
on the edge side, on traditionally small devices like mobile phones. Online super-resolution is also
becoming more and more popular. Deploying online super-resolution instead of off-line
super-resolution can better suit the future application of VSR.
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