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Abstract. In this paper, the network energy of undirected graph, oriented graph, and mixed graph
on random graphs will be studied. We compute energy and network energy on random undirected
graphs, skew energy and network energy on random oriented graphs, and Hermitian energy and
network energy on random mixed graphs by upper bounds of them with theoretical methods. By
comparing network energy and other energies of undirected graph, oriented graph, and mixed
graph of random graphs, we obtain some relations among network energy and other energies
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1. Introduction
Let G={V(G), E(G)} be a simple undirected graph with vertex set V(G) and edge set E(G), while

E(G)⊂V(G) ×V(G)\{{u, u}: u∈V(G)}. If ( )E G m , at the same time, ( )V G n , the undirected
graph G can be denoted as (n, m)-undirected graph, named by G(n, m). ( )NE G , the network energy
of G(n, m), can be defined as follows [1]:

2( ) nlog mNE G n (1)
Let Gσ={V(Gσ), E(Gσ)} be an oriented graph, and σ, the orientation on the edge set E(G), the

oriented graph Gσ is called an (n, m)-oriented graph, denoted by Gσ(n, m). The network energy
NE(Gσ) of Gσ(n, m) is defined as [2]:

( ) nlog mNE G n  (2)
Let Gϕ={V(Gϕ), E(Gϕ)} be a mixed graph, and σ, the orientation on a subset of the edge set

E(G). The network energy NE(Gϕ) of Gϕ with m undirected edges and m


directed edges is
defined as [3]:

 2
( ) nlog m m

NE G n 




(3)
Keep in mind that:

m m m 


(4)

If m and m


satisfy the following equation:
m

r
m m







(5)
Joint with equations (3)-(5), the following equation can be obtained:

 2( ) nlog r mNE G n  (6)
In this paper, the network energy of undirected graph, oriented graph, and mixed graph on

random graphs will be studied. We compute network energy with other energies, e.g., energy, skew
energy, Hermitian energy, etc, of random undirected graphs, random oriented graphs, and random
mixed graphs. We obtain some relations among network energy and others energies.
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The rest of the paper is organized as follows. In Section 2, we present energies of undirected
graph, oriented graph, and mixed graph, e.g., energy skew energy, and Hermitian energy, and
present the bounds of network energy, energy, skew energy, Hermitian energy of random graphs. In
Section 3, we show relations among network energies of undirected graph, oriented graph, and
mixed graph. In Section 4, we get relations among energy, skew energy, and Hermitian energy of
undirected graph, oriented graph, and mixed graph of random graphs respectively. Relations among
network energy, energy, skew energy, and Hermitian energy of random graphs, including
undirected graph, oriented graph, and mixed graph, etc, are obtained in Section 5. The conclusion of
this paper is shown in Section 6 at last.

2. Preliminaries
2.1 Energy , Skew energy, and Hermitian energy

Let A(G) be the adjacency matrix of G={V(G), E(G)}. Hence, if the vertex vi and the vertex vj
are adjacent, thus, Aij=Aji = 1, otherwise, Aij=Aji=0, vi, vj∈V(G). E(G), the energy of G, can be
shown as follows [4]:

1

( ) ( )
n

i
i

E G A G



(7)

where λ1A(G), λ2A(G) , ..., λiA(G), ... , λnA(G) are denoted of the eigenvalues of A(G).

Let S(Gσ) is the skew adjacency matrix of Gσ={V(Gσ), E(Gσ)}. Hence, if i jv v


is a directed
edge of Gσ, thus, Sij=-Sji = 1, otherwise, Sij=Sji=0, vi, vj∈V(Gσ). εS(Gσ), the skew energy of Gσ,
can be shown as follows [5]:

1

( ) ( )
n

S i
i

G S G  



(8)

where λ1S(Gσ), λ2S(Gσ) , ..., λiS(Gσ), ... , λnS(Gσ) are denoted of the eigenvalues of S(Gσ).

Let H(Gϕ) is the Hermitian adjacency matrix of Gϕ={V(Gϕ), E(Gϕ)}. Hence, if i jv v


is a

directed edge of Gϕ, thus, Hij=-Hji = i, while if i jv v is an undirected edge of Gϕ, thus, Hij=Hji = 1,
otherwise, Sij=Sji=0, vi, vj∈V(Gσ). εH(Gϕ), the Hermitian energy of Gϕ, can be shown as follows
[6]:

1

( ) ( )
n

H i
i

G H G  



(9)

where λ1H(Gϕ), λ2H(Gϕ) , ..., λiH(Gϕ), ... , λnH(Gϕ) are denoted of the eigenvalues of H(Gσ).

2.2 Bounds of Random Graph
Let Gn(p) be a random graph with n vertices. What’s more, all the edges in the graph Gn(p) are

connected with p one by one. In this paper, all p is a real constant with p<1, and at the same time,
p>0, for convenience of our description [7].

Theorem 2.1 Let G be a simple, undirected, and a finite graph, while a random graph Gn(p), at
the same time. Thus, NE(Gn(p)), the network energy of G, enjoys the inequality as follows [1]:

3
2( )NE G n p (10)

Theorem 2.2 Let Gσ be a simple, oriented, and a finite graph, while G, the underlying graph is a
random graph Gn(p), at the same time. Thus, NE(Gσ), the network energy of Gσ, enjoys the
inequality as follows [2]:

3
2

2
( )

2
NE G n p 

(11)
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Theorem 2.3 Let Gϕ be a simple, mixed, and a finite graph, while the underlying graph G is a
random graph Gn(p) at the same time, and the cardinal numbers of sets of undirected edges and
directed edges satisfy equation (5). Thus, NE(Gϕ), the network energy of Gϕ enjoys the inequality
as follows[6]:

3
2

2
( ) (2 )

2
NE G n p r  

(12)
Theorem 2.4 Let G be a simple, undirected, and a finite graph, while a random graph Gn(p) at

the same time. Thus, E(Gn(p)), the energy of G enjoys the equation asymptotically almost surely as
follows [8]:

3
2

1
( ) 8 (1 ) (1)

3
E G n p p o


   

   (13)
Theorem 2.5 Let Gσ be a simple, oriented, and a finite graph, while the underlying graph G is a

random graph Gn(p) at the same time. Thus, εS(Gσ), the skew energy of Gσ enjoys the equation
asymptotically almost surely as follows [9]:

3
2

1
( ) 8 (1)

3S G n p o


  
   (14)

Theorem2.6 Let Gϕ be a simple, mixed, and a finite graph with the maximum degreeΔ. Thus,
εH(Gϕ), the Hermitian energy of Gϕ, enjoys the inequality as follows [6]:

( ) 2

2 ( ) 2

H

H

G mn n

m G m





 



 

 



 (15)

3. Relations among Network Energies
For undirected graph G, oriented graph Gσ, and mixed graph Gϕ, combing with equations (1), (2)

and (6), the Theorem 3.1 can be obtained as follows.
Theorem 3.1 If oriented graph Gσand mixed graph Gϕ share the same underlying graph G,

NE(Gσ), NE(Gϕ), and NE(G), the network energy of them enjoy the inequality as follows:
1 ( ) ( ) ( )NE G NE G NE G    (16)

with equality iff
( ) ( ) ( ) nNE G NE G NE G K    (17)

while
( ) ( ) ( )

( ) ( ) ( )

V G V G V G

E G E G E G

 

 

   

   



 (18)

thus
( ) ( ) ( ) 0

( ) ( ) ( ) 0

V G V G V G

E G E G E G

 

 

  

  



 (19)

Combing with equations (10) and (11), the Theorem 3.2 can be obtained as follows.
Theorem3.2 If the underlying graph of oriented graph Gσ is G, at the same time, if n→∞, thus,

NE(G) and NE(Gσ), the network energy of G and Gσ enjoy the following equation:
( )

lim 2
( )n

NE G

NE G 




(20)
The Theorem 3.3 can be obtained as follows combing with equations (10) and (12).
Theorem 3.3 If the underlying graph of mixed graph Gϕ is G, at the same time, if n→∞, thus,

NE(G) and NE(Gϕ), the network energy of G and Gϕ enjoy the following equation:
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( ) 2
lim

( ) 2n

NE G

NE G r





 (21)

The Theorem 3.4 can be obtained as follows combing with equations (11) and (12).
Theorem 3.4 If the oriented graph Gσ and the mixed graph Gϕ share the same underlying graph

G, at the same time, if n→∞, the NE(Gσ) and NE(Gϕ) enjoy the following equation:
( ) 1

lim
( ) 2n

NE G

NE G r







 (22)

4. Relations among Energy, Skew Energy, and Hermitian Energy
The Theorem 4.1 can be obtained as follows by Theorem 2.4 with equation (13).
Theorem 4.1 If the graph G is a random graph Gn(p), thus, E(Gn(p)), the energy of G, enjoys the

inequality as follows:
3
2

4
( )

3
E G n




(23)

with equality iff
1

2
p 

.
Proof: For

3
2

3
22

3
22

3
22

3
2

3
2

1
( ) 8 (1 ) (1)

3

1
8 (1)

3

1 1 1
8 ( ) (1)

3 4 4

1 1 1
8 ( ) (1)

3 4 2

1 1
8

3 2

4

3

E G n p p o

n p p o

n p p o

n p o

n

n













  

  

    

   

 



 
  
 
  
 
 
 
 
 
 
 
 
 

(24)
which completes this proof.
Theorem 4.2 If G1, the graph is a random graph Gn(p), and at the same time, G2, the graph is

also a random graph Gn(q), if p+q=1, thus, E(Gn(p)) and E(Gn(q)), the energies of random graphs
Gn(p) and Gn(q) enjoy the following equation:

( ( )) ( ( ))n nE G p E G q (25)
Proof: For

      1 1 1

2 2 2
p p q p q p q      

(26)

      1 1 1

2 2 2
q p q p q p q      

(27)
Combing with equations (13) and (26), we have
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   

   

 

3
2

3
2

3
2

3 22

1
( ( )) 8 (1 ) (1)

3

1 1 1 1 1
8 1 ( (1)

3 2 2 2 2

1 1 1 1 1
8 (1)

3 2 2 2 2

1
4 1 (1)

3

nE G p n p p o

n p q p q p o

n p q p q p o

n p q o









  

      

     

   

 
  

    
        
    
        
 
   (28)

Combing with equations (13) and (27), we have

   

3
2

3
2

1
( ( )) 8 (1 ) (1)

3

1 1 1 1 1
8 1 ( (1)

3 2 2 2 2

nE G q n p p o

n p q p q p o





  

      

 
  

    
        

   

 

3
2

3 22

1 1 1 1 1
8 (1)

3 2 2 2 2

1
4 1 (1)

3

n p q p q p o

n p q o





     

   

     
         
 
   (29)

Combing with equations (28) and (29), we can obtain equation (25).
Thus complete this proof.

Lemma 4.1 The energy E(G) and ( )E G enjoy the following equation:
( ) ( )E G E G (30)

Proof: For

nG G K  (31)
so G can be considered as the edges of it are connected of p with

 
2 ( )

( ) ( ) 1

E G
p

V G V G


 (32)
and G can be considered as the edges of it are connected of q with

 
2 ( )

( ) ( ) 1

E G
q

V G V G



(33)

while ( ) ( )V G V G , thus

   1 1
( ) ( ) ( ) ( ) 1 ( ) ( ) 1

2 2
E G E G V G V G V G V G    

(34)
In this way, p+q=1, combing with equations (25), we can obtain equation (30) immediately.
The proof is thus completed.
The Theorem 4.3 can be obtained as follows combing with equations (13) and (14).
Theorem 4.3 If the underlying graph of oriented graph Gσ is G, and, at the same time, if n→∞,

the E(G) and εS(Gσ) enjoy the following equation:
( )

lim 1
( )n

S

E G
p

G
 

(35)
Combing with equations (13), (14), and (25), we have Theorem 4.4 as follows.
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Theorem 4.4 If Gσ1 is a simple, oriented, and a finite graph, and G1, the underlying graph of
Gσ1 is a random graph Gn(p), while Gσ2 is also a simple, oriented, and a finite graph, and G2, the
underlying graph of Gσ2 is a random graph Gn(q), if p+q=1, at the same time, thus, εS(Gσ1) and
εS(Gσ2), the skew energies of Gσ1 and Gσ2, and E(Gn(p)) and E(Gn(q)), the energies of Gn(p) and
Gn(q), enjoy the following equation:

3
2

1 2

3
2

1 2

( ) ( ) 8 ( ( ))

( ) ( ) 8 ( ( ))

S S n

S S n

G G n E G p

G G n E G q

 

 

 

 







 (36)

Proof: For
3
2

1

3
2

2

1
( ) 8 (1)

3

1
( ) 8 (1)

3

S

S

G n p o

G n q o











 

 

  
    


 
    (37)

Combing with equations (13) and (37), thus
1 2

3 3
2 2

3 3
2 2

3 3
2 2

3 3
2 2

3 3
2 2

( ) ( )

1 1
8 (1) 8 (1)

3 3

1 1
8 8 (1) (1)

3 3

1
8 8 (1)

3

1
8 8 (1 ) (1)

3

8 ( ( )) 8 ( ( ))

S S

n n

G G

n p o n q o

n n p o q o

n n pq o

n n p p o

n E G p n E G q

  

 

 





   

   

  

   

 

   
      

   
      
 
  
 
  

(38)
The proof is thus complete.

5. Relations among Network Energies and Others Energies
For all energies, e.g., network energy, energy, skew energy, Hermitian energy, etc., are estimated

on random undirected graphs, random oriented graphs, and random mixed graphs, the relations
among previous energies become another focus that appear in front of us. Energy, skew energy, and
Hermitian energy will be compared with network energy within that context in this section.

The Theorem 5.1 can be obtained as follows combing with equations (10) and (13).
Theorem 5.1 Let G be a simple, undirected, and a finite graph, and a random graph Gn(p), at the

same time, if n→∞, thus, E(Gn(p)) and NE(Gn(p)), the energy and network energy of G enjoy the
following equation:

( ) 8
lim 1

( ) 3n

E G
p

NE G 
 

(39)
The Theorem 5.2 can be obtained as follows combing with equations (11) and (14).
Theorem 5.2 Let Gσ be a simple, oriented, and finite graph, and G, the underlying graph, is a

random graph Gn(p), at the same time, if n→∞, εS(Gσ) and NE(Gσ), the skew energy and
network energy of Gσ enjoy the following equation:

( ) 8
lim 2

( ) 3
S

n

G

NE G










(40)
The Theorem 5.3 can be obtained as follows combing with equations (10) and (14).
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Theorem 5.3 Let Gσ be a simple, oriented, and finite graph, and the underlying graph G is a
random graph Gn(p), at the same time, if n→∞, εS(Gσ) and NE(G), the skew energy of Gσ and
network energy of G enjoy the following equation:

( ) 8
lim

( ) 3
S

n

G

NE G






(41)

6. Conclusion
Random graph theory is one of the most important theory of graph theory and complex network

from beginning. Energy of undirected graph is the basic theory of graph energy. What’s more,
energy, skew energy, and Hermitian energy are basic theory of undirected graph, oriented graph,
and mixed graph respectively. In this paper, network energy, energy, skew energy, and Hermitian
energy of random undirected graph, random oriented graph, and random mixed graph, are computed
and compared, and relations among them are obtained. The relations among network energy and
other energies of random graphs, and at the same time the relations among network energy and
other energies of small world graph, scale free graph, etc, will be our next work.
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