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Abstract. One of the main challenges of the low frequency, broadband and strong sound
absorption performance of an anechoic coating is the design of the cavity section shape. A
generative-based design method was investigated in this study. Two generative-based models
were trained to design the cavity section shape of anechoic coatings with a highly efficient
absorption coefficient. The design results were compared in terms of mode collapse and average
sound absorption coefficients. The results show that the WGAN-GP model can stably generate 100
new designs in only 3 seconds, dramatically speeding up the design process.
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1. Introduction
The underwater anechoic coating consists of a cavity and a substrate medium. A remarkable

feature of the anechoic coating is the local resonance of the cavity. Early research mainly focused
on the design of regular cavities in anechoic coatings [1-4]. The study on the absorption coefficients
of these structures shows that the cavity geometry determines the lowest effective sound absorption
frequency and bandwidth under the same material [5].

The acoustic characteristics of materials and structures are usually predicted using artificial
neural networks [6][7]. The deep learning model with fine tuning super parameters has been used
to automatic metasurface design [8]. Some generative models, such as variational autoencoders
(VAEs) and generative adversarial networks (GANs), have been applied to complex heterogeneous
composite reconstructions [9][10]. However, the generative model has not been published in the
relevant literature in the structural topological design of underwater anechoic coatings.

In this study, the design model of underwater anechoic coating based on DCGAN and WGAN
GP is studied and trained to learn the internal mapping between cavity section shape and acoustic
performance. The generative model can creatively generate new data different from the original
data. We use samples with average absorption coefficients in the range of 800 to 6000 Hz and
greater than 0.75 as the data set, which includes 3000 images with a size of 128 pixels by 128 pixels
[5]. The purpose is to obtain a topology with good sound absorption performance.

2. Modelling and analysis

2.1 The underwater anechoic coating model
The underwater anechoic coating is formed by embedding a cavity in a viscoelastic matrix

medium. The actual size of the structure is referenced to be 14.17 mm by 14.17 mm [3].
Considering that an analytical solution is difficult to solve for irregular samples, in this paper, the
sound absorption coefficients of the samples are calculated by FEM [5]. The numerical solution
model is shown in Fig. 1(a). COMSOL Multiphysics 6.0 with MATLAB is used for the sweep
frequency analysis of the periodic structure of the sound absorption coating.

Fig. 1(b) compares the absorption coefficient of a cylindrical cavity section shape calculated
using numerical and analytical solutions. The consistency results within 6000 Hz prove that the
FEM used in this paper is reliable.
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Fig. 1 Model analysis and solution.

2.2 Cavity section shape
In this paper, the coordinates (x1, x2) in (1) are used to solve the geometric contour of the cavity

section shape [5]:
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r [1 ( )]12 0
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The cavity section shape is constructed by the fourth order formula of (1). The parameters range
are shown in Table 1, and r0 is equal to 1 mm.

Table 1. Range of parameters
Name c1 ~ c4 n1 ~ n4

Min 0 0

Max 0.15 16

The high dimensionality of data is the difficulty in analyzing the sound absorption characteristics
of irregular cavities [11]. Therefore, this paper studies a generation method of high-dimensional
implicit mapping from sound absorption coefficients to cavity cross-section shape, which will be
described in detail in Section III.

3. Generative-based Method

3.1 DCGAN-based model
The DCGAN model consists of a generator and a discriminator network. The generator maps

random noise to fake coatings, while the discriminator innovatively discriminates the real and fake
coatings. The workflow of training the DCGAN model for the anechoic coating feature
reconstruction process is shown in Fig. 2(a), in contrast, the design part in Fig. 2(b) shows
generation of the anechoic coating topologies.
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Fig. 2 Workflow diagram of DCGAN model.
The composition of the generator and discriminator can be described as follows: The input to the

generator is a Gaussian distribution, which in this study contained 100 vectors, and the generator
includes three transposed convolutional layers. Each transposed convolutional layer is followed by
batch normalization and leaky ReLU activation, while the activation that followed the last layer is
Tanh activation. The generator outputs a fake coating image. The discriminator has three
convolution layers; each convolution layer is followed by batch normalization and leaky ReLU
activation. The last layer outputs one neuron node, which discriminates whether the coating is
legitimate.

The generator’s goal is to generate a distribution as close as possible to the real data, while the
purpose of the discriminator is to distinguish the generated data from the real data as much as
possible. The similarity between the generated sample and the original sample depends on the
antagonism of the model when DCGAN uses the "minimum maximum" loss function, which
depends on the selection of weights. It forms a dynamic adversarial mechanism, and this dynamic
countermeasure mechanism is improved through model training. The generator and discriminator
continuously adjust the weight according to the loss value to update the gradient until the DCGAN
model reaches Nash equilibrium [12]. Finally, a generator with a generating ability is obtained. The
calculation process of "maximum and minimum" loss value based on DCGAN model is shown in
(2).
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Where D(x) represents the discriminator network when discriminating the generated and original

coatings, G(z) represents the generator network when generating fake coatings based on a Normal
distribution. Pdata(x) is the distribution of the original coatings, while Pz(z) is the distribution of the
generated coatings.

3.2 WGAN-GP-based model
Training instability is a common problem with a DCGAN. The general practice is to train the

discriminator with a dropout layer trick. Equation (2) is equivalent to minimizing the Jensen–
Shannon (JS) divergence between Pdata(x) and Pz(z), as shown in (3).
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However, when the two distributions are completely disjoint at first, the final JS divergence is

always log2, as shown in the yellow discriminator in Fig. 3. The model cannot converge, which
leading to mode collapse.

Fig. 3 JS divergence of two Gaussian distributions.
To make the training process more stable, a weight clipping strategy was adopted to forcibly

satisfy the Lipschitz constraint on the discriminator based on the DCGAN, which is called the
WGAN. However, careful design of the network and precise tuning of hyperparameters are needed
to stabilize the training process. The loss function of the WGAN is shown in (4).

~ Π( , )
( , ) = inf E [|| ||]( )~W
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where W represents the Wasserstein distance between Pdata and Pz , x represents the original
distribution, and y represents the generative distribution.

According to the Kantorovich–Rubinstein duality theory [13], when the discriminator satisfies
the Lipschitz continuity condition, implemented by weight clipping, Equation (4) can be
transformed into (5).
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Where J(D) represents the discriminator loss value, and f is the critic, which is equivalent to the

discriminator. The method of weight clipping to a specific range is too simple and crude; therefore,
the loss function adds a gradient penalty to form the WGAN-GP, as shown in (6).
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Where λ is a constant factor, and
 x

s is the gradient for randomly sampled values between the
original distribution and the generated distribution.

The L2 norm size of the discriminator gradients in the WGAN-GP is constrained to be
approximately 1 to satisfy the 1-Lipschiz continuous function. It can avoid gradient vanishing and
solve the problem of non-convergence of the results when the two distributions do not disjoint, as
shown in the green critic in Fig. 3.

4. Results and discussion

4.1 Results
The deep learning model of DCGAN and WGAN-GP is trained in an ordinary notebook

computer, independently. The operating system is Windows10, the CPU is i5-8265U, the memory



125

Advances in Engineering Technology Research EEMAI 2023
ISSN:2790-1688 Volume-5-(2023)
is 8 GB and 2 GB NVIDIA independent graphics card. It is implemented on the Anaconda platform
of Python 3.7 and trained using TensorFlow 2.0 framework. Figs. 4(a) and (b) show the generator
and discriminator loss values of the two generative-based models in the training process,
respectively. It can be seen from the comparison that under the condition of training for the same
epoch, the discriminator loss value of the WGAN-GP is smaller than that of the DCGAN, which
demonstrates the ability of the GP term to steer the generative distribution closer to the original
distribution.

Fig. 4 Loss value of the two generative-based models.
The loss value of the DCGAN is obtained by finely designing the network. Under the condition

of different configurations, the comparison of the generated coatings is shown in Fig. 5.

Fig. 5 Generated structures of the coatings. (a) DCGAN model with mode collapse, (b) WGAN-GP
model without mode collapse.

Mode collapse occurs in the DCGAN without a batch normalization layer and a significant
learning rate, as shown in Fig. 5(a), which demonstrating that DCGAN training is unstable and
prone to mode collapse. Therefore, the WGAN-GP is more conducive to engineering applications,
as shown in Fig 5(b).

4.2 Discussion
Based on the “Batchsize” processing capacity of WGAN-GP model, 100 cavity section shapes

can be generated in 3 seconds. Using the trained model to generate a new design is hundreds of
times more efficient than GA, which greatly speeds up the design process [14][15]. It should be
noted that the process of WGAN-GP to generate a new cavity section shape completely follows the
workflow of Fig. 2 and (6), and no prior knowledge is required. Numerical simulation verification
has been carried out for the newly generated cavity section shape. The absorption coefficients
corresponding to the eight randomly selected cavity section shapes are shown in Fig. 6.
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Fig. 6 Absorption coefficients of the generated designs.
The results show that the peak frequency corresponding to the cavity cross-section shape

generated based on GAN is 1000 Hz, and the average absorption coefficient is greater than 0.7580
(800 Hz to 6000 Hz). The sound absorption effect of low frequency and broadband is realized.

Table 2. absorption effect of newly generated design
Design 1 Design 2 Design 3 Design 4

0.7963 0.7899 0.7748 0.7633

Design 5 Design 6 Design 7 Design 8

0.7952 0.7801 0.7707 0.7580

5. Conclusion
In this paper, a design method for cavity section shape of underwater anechoic coating based on

GAN is studied, which realizes the cross application of cavity section shape design and depth
learning. Compared with traditional methods, such as GAs, a GAN based method does not require
real-time calculation, and can generate new data different from the training set. The WGAN-GP
model is simple, efficient and more stable in the design of the cavity section of the low-frequency
and broadband sound absorption coating. The results show that the interdisciplinary method based
on deep learning has the immense potential in guiding mechanical structure design.
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