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Abstract. Based on the principle of maximization of the utility value for shareholders, we establish
an optimal capital structure model under stochastic interest rates with improved endogenous default
barriers by considering the tax and bankruptcy risk. From the numerical results, we find the drift and
volatility of the firm’s log return, the average risk aversion of all the shareholders, the long term
mean level of interest rate and the bond maturity are the key variables in determining optimal capital
structure. We also find that the utility values behave as a concave function with bond principals. We
can conclude that there exists an optimal amount of bond issuance to maximize the utility value of
shareholders.
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1. Introduction
Capital structure refers to a mix of a company’s debt and equity. Under the well-known

Modigliani & Miller theorem [1], the capital structure will not influence the firm’s value in perfect
markets in which there are no taxes, no transaction costs and no bankruptcy costs. But these costs
do exist in the real world. Many theories have been put forward to address this. According to [2],
trade-off theory, pecking order theory and market timing theory are the most important three. [3]
divided the trade-off theory into two parts, one is the static trade-off theory and the other one is
dynamic trade-off theory. Representatives of the static trade-off theory are provided by [4] and [5].
[6,7] are both concerned with the dynamic trade-off theory. [8,9] are examples of pecking order
theory. market timing theory is developed by [10]. [11] analyzed IPO data of 500 firms loacted in
coastal areas listed in China’s A-share maket, and the rusults showed that the capital structure of
these firms indeed affected by the market timing attempts. Some literatures concern on empirical
test, for example, [12] uses empirical analysis method on panel data to verify the EVA effect on
capital structure. And [13] illustrated an empirical approach for determing optimal capital structure.

In the trade-off theory, [14] were the first to study the capital structure problem by means of the
contingent-claims analysis approach. [15] and [16] extended the contingent-claims method. [7,17]
show that a dynamic trade-off model with features that are not typically included in previous capital
structure models can explain many stylized facts. [18] provided a number of new insights into
capital structure decisions by recognizing that firms simultaneously use different types, sources, and
priorities of debt. [19] studied a defaultable firm’s debt priority structure in a simple structural
model where the firm issues senior and junior bonds and is subject to both liquidity and solvency
risks. [20] developed a model in which optimal capital structure and debt maturity are jointly
determined in a stochastic interest rate environment. They found that the optimal proportion of debt
is smaller than empirical observations. And they also found that the long-run mean of the interest
rate is a key variable in determining the optimal capital structure and debt maturity. But they
assume that the firm pays tax at a constant tax rate, dis- regarding whether the final firm value is
higher or lower than the initial firm value. This does not agree with reality, since a firm in the real
world would only have to pay tax when its value becomes larger than the initial value. The same
problem also exists in [19]. [21] presents a new “capital structure substitution” theory that is based
on one simple hypothesis: the company management manipulate the capital structure so that the
earnings per share are maximized.
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In this paper, similar to [20, 21], we build an optimal capital structure model based on the

principle of maximization of the shareholders’ utility value under an endogenous varying default
barrier. But in contrast to these papers, the tax is assumed to be paid at the end of the debt term, and
only when the final value of the firm is larger than the initial value, as in the real world. Debt
financing generally offers lower costs than the income of the firm’s value and will benefit the
shareholders’ profit. However, an increase of debt will amplify the firm’s credit risk, which will
reduce the utility of the shareholders. The optimal capital structure in this paper is set to be the best
proportion of debt over total firm value that maximizes the shareholders’ utility. So the owners of
the firm, that is, the shareholders, have to judge how much debt they should allow to maximize their
utility per share.

This rest of the paper is organized as follows: Section 2 describes the basic assumptions and the
model framework. Section 3 gives some numerical results. Section 4 concludes. Section 5 provides
the proofs of some formulas stated in the paper.

2. Assumptions and Model Setting
2.1 Basic Assumptions

Let (Ω, ℱ, ℙ) be a probability space, where Ω is the sample space, ℱ is a σ-field on Ω, and P is
the physical probability measure on Ω and ℱ. We do not assume the financial market is complete.
Therefore, there exists a set of equivalent martingale measures. In reality, we need to calibrate to
market data to find the risk neutral measure ℚ under which we should price contingent claims.

We consider a firm which will issue a T year maturity bond, with the coupon paid at maturity,
aiming to maximise the shareholders’ utility. The utility function is as follows:

� = �ℙ � − 1
2
�� × �ℙ(�) (1)

where X is the after-tax present firm value per share given by formula (18), and A� is the average
risk aversion of the shareholders. Eℙ X and Dℙ(X) represent the expectation and variance of X
under the probability measure ℙ.

2.2 Assumptions and Notation of the Model
Assumption 1: The market interest rate follows the Vasicek model [22]:

��� = � � − �� �� + ������
ℙ (2)

where α is the long term mean level, βis the speed of reversion, σris instantaneous volatility, and
Wrt

ℙ is a standard Brownian motion under ℙ.
Assumption 2: The before-tax asset value of an unleveraged firm follows a geometric Brownian

motion (GBM) process under the physical probability measure ℙ:
���
��

= ��� + ������
ℙ , (3)

where μ is the drift term, σv is the constant volatility and Wvt
ℙ is a standard Wiener process

under ℙ such that the correlation between Wvt
ℙ and Wrt

ℙ is ρ.
Under the risk-neutral probability measure ℚ, we have

����
ℚ = ����

ℙ − ��−�
��

�� (4)
and the unleveraged firm value will behave as follows:

���
��

= ���� + ������
ℚ . (5)

For the interest rate process, we can reformulate it as following under measure ℙ:
��� = � � − �� �� + ��� ����

ℙ + 1 − �2���� ��
ℙ , (6)

in which ���(���
ℙ ,���� ��

ℙ ) = 0.
Under the risk-neutral measure, we can calibrate to real-world risk-free bond prices to find a

relationship between W� rt
ℙ and W� rt

ℚ, that is:
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����� ��
ℚ = ���� ��

� + λdt. (7)
Here we just assume the parameter λ in our numerical calculation rather than calibrate to

real-world risk-free bond prices.
As a result, the interest rate process underℚ should be as:

�� = � � − �� + ���
�� − �
��

− 1 − �2��� �� + ��� ����
ℚ + 1 − �2���� ��

ℚ

= �ℚ �ℚ − �� �� + ������
ℚ (8)

with �ℚ = ���−���
��

and �ℚ = ����−����+ 1−�2�����
���−���

.
Under the Vasicek model, the discounted value of a risk-free zero-coupon bond with unit face

value and maturity T is:
Γ ��, �; � = ��� � �, � − �(�, �)�� , (9)

where � �, � = �ℚ −
��2

2�ℚ
2 � �, � − � − � − ��2�2 �,�

4�ℚ
, � �, � = 1

�ℚ
1 − �−�ℚ(�−�) .

Assumption 3: If leveraged, the firm will issue a coupon bond with principal P and a finite
maturity time T . The coupon is assumed to be paid only once at maturity, and is chosen (see
formula (17)) to make the present value of the bond equal to the principal P. We simply assume the
bond issuance cost is equal to a fixed cost IC plus a flexible cost which is proportional to the
principal P at a constant rate of κ. Let BIC 0, P denote the bond issuance cost at time 0, then
BIC 0, P = IC + κP.

The firm will have to pay the bond issuance cost first, so the initial value of the firm will become
V�0 = V0 − (IC + κP). The leveraged firm value process under measure ℙ and measure ℚ should be
as follows with initial value V�0:

����
���

= ��� + ������
ℙ (10)

and
����
���

= ���� + ������
ℚ . (11)

Assumption 4: We assume that the firm pays tax only at time T and the tax rate is θ. The tax
will only be paid when the final firm value is larger than the initial value. We denote the leveraged
after-tax firm value at time T as V�T∗ , then

���∗ − � ��� − �0
+
. (12)

For unleveraged firm, ��� should equal to ��.
Assumption 5: Default Barriers
We assume that bankruptcy occurs when the firm’s asset value hits an endogenous default

barrier V�tB, t = 0: T . We define the default barrier at which the expected discounted after-tax firm
value at maturity under the risk-neutral probability measure ℚ will be below the discount value of
the debt principal, that is:

�ℚ ���∗�− �
� ����� |ℱ� < � × Γ(��, �; �). (13)

This inequality can equivalently be written as V�t < V�tB(rt, t; P, T) with V�tB(rt, t; P, T) given by
(14).

Following formula (19) in [23], we have
�ℚ ���∗�− �

� ����� |ℱ� = �ℚ ��� − � ��� − �0
+
�− �

� ����� |ℱ�

= �ℚ ���� �
� ����� −12��

2 �−� +���� �−�
ℚ

�− �
� ����� |ℱ�

−��ℚ ���� �
� ����� −12��

2 �−� +���� �−�
ℚ

− �0
+
�− �

� ����� |ℱ�
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= �ℚ ����
−12��

2 �−� +���� �−�
ℚ

|ℱ� − ��ℚ ���� �
� ����� −12��

2 �−� +���� �−�
ℚ

− �0
+
�− �

� ����� |ℱ�

= ��� − �� ���, � − �, �0
where

� ���, � − �, �0 = ���� �1 − �0Γ ��, �; � � �2

�1 �, �, ��, ��� =
log ���

�0Γ ��,�;�
+1
2Σ

2(�−�)

Σ2(�−�)

�2 �, �, ��, ��� = �1 �, �, ��, ��� − Σ2 � − �

Σ2 � − � = � − � ��2 −
��2

�ℚ
3 − �ℚ � − � + 3

2
− 2�−�ℚ �−� + 1

2
�−2�ℚ �−�

+ 2�����
�ℚ
2 �−�ℚ �−� + �ℚ � − � − 1 .

Then �ℚ ���∗�− �
� ����� |ℱ� < � × Γ ��, �; � implies that

��� − ����� �1 �, �, ��, ��� + ��0Γ ��, �; � � �2 �, �, ��, ��� < � × Γ(��, �; �) ,which gives

��� − ����� �1 �, �, ��, ��� + ��0Γ ��, �; � � �2 �, �, ��, ��� − � × Γ ��, �; � < 0.
Denote
Π �, �, ���, � = ��� − ����� �1 �, �, ��, ��� + ��0Γ ��, �; � � �2 �, �, ��, ��� − � ×

Γ ��, �; � .
We find that ∂Π t,T,V�t,P

∂V�t
> 0 , it means that Π t, T, V�t, P is a monotonous function on V�t and

have a unique solution on Π t, T, V�t, P = 0. So we define:
���� ��, �; �, � = ���: Π �, �, ���, � = 0 . (14)

Definition: First passage time
We define

� = ��� �: ��� ≤ ���� ��, �; �, � , (15)
which is the first time at which the asset value V�t hits V�tB rt, t; P, T .
The firm should not default at time 0, which means τ should be larger than 0. That is V�0 > V�0B ,

which implies �0 − �� + �� −
�−��0� �2 0,�,�0,��0 Γ �0,0;�

1−�� �1 0,�,�0,��0
> 0.

So we have � <
�0−�� 1−�� �1 0,�,�0,��0 +��0� �2 0,�,�0,��0 Γ �0,0;�

Γ �0,0;� +� 1−�� �1 0,�,�0,��0
. Moreover, � should be

never be larger than the initial firm value, so � < ��0 = �0 − �� + �� , which means � < �0−��
1+� .

As a result, � < ��� �0−��
1+�

,
�0−�� 1−�� �1 0,�,�0,��0 +��0� �2 0,�,�0,��0 Γ �0,0;�

Γ �0,0;� +� 1−�� �1 0,�,�0,��0
or else the

firm will default immediately at time 0.

2.3 Maximization of Shareholders’ Utility Value
2.3.1. Calculate the coupon CP at maturity

Before calculating the coupon, we should first find out what will influence the bond value. The
bond cash flows at any time s are as follows:

d � =
� + �� � = � and � < �

1 − ∅ ���� − � 1 − ∅ ���� − �0
+

� = � ≤ �.
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The second line means that when the firm goes bankrupt, it should pay the clearing fee

(proportional to the firm value at default at a recovery rate of ∅ ) first and then pay tax. So the
present bond value should be equal to the expectation of the sum of all the discount cash flows
under the risk-neutral probability measure ℚ (we denote the present value of debt by
DV T, V0, r0, P ):

�� �, �0 , �0 , � = � + �� �0
ℚ 1�>��− 0

� ����� + �0
ℚ

0
� 1 − ∅ ���� − � 1 − ∅ ���� − �0

+
×�

� � − � 1�<��− 0
� ����� �� = P + �� �0

ℚ 1�>��− 0
� ����� + �0

ℚ
0
� 1 − ∅ ���� − � 1 − ∅ ���� −�

�0
+ × �(� − �) �− 0

� ����� �� ,

where � � − � = 1 � = �
0 � ≠ � .

Let
� �, �0 = �0

ℚ 1�>��− 0
� �����

� �, �0 = �0
ℚ

0
� 1 − ∅ ���� − � 1 − ∅ ���� − �0

+
× �(� − �)� �− 0

� ����� �� .
So we get:

� = �� �, �0 , �0 , � = � + �� × � �, �0 + � �, �0 . (16)
which implies

�� =
�−� �,��0 −�×�(�,�0)

�(�,�0)
. (17)

We have to compute L T, V0 and H T, V0 numerically in Section 3 because of the
complexity of τ.
2.3.2 Shareholders’ utility function

We now consider the after-tax leveraged firm value at time T from the perspective of the stock
shareholders.

If the firm has not defaulted till time T, the final value belonging to the shareholders should be
equal to the final leveraged firm value minus the coupon payment value at time T (that is CP, which
has been given as formula (17) ), the tax and the principal of the bond (P ). If the firm defaults
before time T, then at the default time the firm should pay a clearing fee first and then pay tax. Any
value left after that should be all paid to the bondholders. As a result, nothing will be left to the
shareholders. So to the shareholders, once upon default, they do not care about how much the
recovery be since they will receive nothing in any case.

We denote the after-tax leveraged firm value belonging to the shareholders at time T by V�TS :

���� =
��� − �� − � ��� − �� − �0

+
− �

+
�� � > �

0 �� � ≤ �.
Here we take the positive part in the first line because according to the barriers’ definition, V�TB

should equal to P, which means when V�T > P, and the firm never defaults before time T, τ should
be larger than T. But on the other hand, V�T − CP − θ V�T − CP − V0

+
− P have the chance to less

than 0 even when V�T > P . At this situation, the stockholders will get nothing but not receive the
negative value.

At time 0, the stock-holders need to judge the level of debt they need for optimum leverage. It
means that they will choose the principal amount to maximize the utility value. Denote the after-tax
present firm value per share as X:

� = ���
S �− 0

� �����

�0−�
. (18)

Then the utility function of the shareholders corresponding to the principal P is:

� � = �ℙ ���
S �− 0

� �����

�0−�
− 1

2
�� × �ℙ ���

S �− 0
� �����

�0−�
. (19)
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That is, they will compute max

P
U P to find the optimal bond principal and the corresponding

utility. Because of the complexity of the first passage time τ, we cannot get U P in closed form, so
we have to calculate the values numerically in Section 3.

3. Numerical Results
In this section, we analyse the numerical results based on the parameters in Table 1. For the

Vasicek model parameters, we just use the estimated results as [24] . According to formula (16), the
maximum amount of bond principal this company can issue is 99.9 (last cell in Table 1).

Table 1. Parameters for simulation
Interest rate β = 0.099 α = 0.101 σr = 0.01 r0 = 0.05 λ = 0.3

Firm asset μ = 0.12 σv = 0.15 V0 = 100 ρ = 0.1 A� = 1

Others
T = 5 years θ = 0.2 ϕ = 0.4

IC = 0.001 κ = 0.001 Pmax = 99.9

We use MATLAB to do the numerical calculation. For a given bond principal P (such as P = 20),
we find the corresponding utility by 2 steps:

Step 1: Coupon calculation under risk-neutral measure ℚ
1) Simulate a M× N matrix of the leveraged firm values as formula (11) by Monte-Carlo

simulation methods, where M represents the paths number, and N represents the time steps;
2) Simulate a M× N matrix of the interest rates as formula (8);
3) For each path, calculate the unit zero coupon bond values as formula (9) corresponding to

every time t and interest rate rt;
4) For each path, calculate the barriers as formula (14) corresponding to every time t and interest

rate rt;
5) For each path, calculate the first passage time as (15), corresponding to simulated leveraged

firm values V�t and calculated default barriers V�tB ;
6) Calculate the coupon as formula (17).
Step 2: Utility calculation under real world measure ℙ
1) Simulate a M× N matrix of the leveraged firm values as formula (10);
2) Simulate a M× N matrix of the interest rates as formula (2);
3) For each path, calculate the unit zero coupon bond values as formula (9) corresponding to

every time t and interest rate rt;
4) For each path, calculate the barriers as formula (14) corresponding to every time t and interest

rate rt;
5) For each path, calculate the first passage time as (15) corresponding to simulated leveraged

firm values V�t and calculated default barriers V�tB ;
6) Calculate the utility as formula (19).
We take a grid dividing the interval from 0 to 99.9 into 30 equal parts, and then calculate the

utility values at each grid point using formula (19). We draw the curve in Fig. 1 when P is less than
79.92. We can see that the values line increases step by step from P = 0, approaches the maximum
amount, and then turns downwards. Along with the value of P grow continuously, the utility value
move downwards quickly. As a result, we can conclude that there exists an optimal amount of bond
issuance when we consider the utility maximization of the shareholders.
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Fig. 1: Utility values corresponding to different principals P (Pmax = 79.92).
In order to identify the relationship between some parameters and the optimal principal, we
present some sensitivity tests. For given parameters, we find the optimal principal as follows:
1) Set the interval of principal as [0,99.9];
2) Take a grid dividing the interval into 4 parts, and then calculate the utility values at each grid

point as mentioned above;

Fig. 2: Optimal bond principal depending on
the drift (μ).

Fig. 3: Optimal bond principal depending on
the volatility (σv) of the firm’s return.

Fig. 4: Optimal bond principal depending on
the risk aversion (A�).

Fig. 5: Optimal bond principal depending on
long term mean level (α) of the interest rate

process.
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3) Find the grid point corresponding to the largest utility. Set the lower bound of the interval of

principal as the front one of this point and the upper bound as the behind one. If this point is the
lower bound or the upper bound, then just set the lower bound or the upper bound as itself;

4) Repeat 2) and 3) till the interval is small enough;
5) Take the final grid point corresponding to the largest utility as theoptimal principal.
Fig. 2 shows how the optimal principal behaves as a function of the drift (µ) of the Brownian

motion under the real probability measure. When the drift goes up, the optimal principal also goes
up but the marginal growth slows down. Of course, the firm with larger drift but the same volatility
will make more profit in expectation. And as long as the interest payment cost of the bond is lower
than the profit gained, the more of the bond be issued the more profit will be made. When the
marginal utility growth caused by the difference between the profit from the firm and the interest
payment, and the marginal utility decrease caused by the risk raising by the bond, are equal to each
other, the principal will approach to the optimal amount. And since the utility increases with the
drift, but decline with the bond principal, the optimal bond principal behaves as a logarithmic
function of the drift.

Fig. 3 shows that when the volatility of the firm’s returns increases, the corresponding optimal
bond principal decreases rapidly. This is so because the greater the volatility, the easier it is for the
firm to default, which in turn reduces the utility of the shareholders.

Fig. 4 shows the relationship between average risk aversion and the optimal principal. We have
found that when the risk aversion increases from 0.3 to 3 (while all the other parameters are kept
constant as in Table 1), the corresponding optimal principal drops rapidly. In particular, when the
average risk aversion grows to 2.4 and over, the optimal principal drops to zero, which means that
in such a situation the firm will not be issuing any bonds. It is reasonable that the larger the average
risk aversion of the shareholders, the lower the attractiveness of the bond since the bond would
reduce the utility of the shareholders. And when the average risk aversion becomes large enough,
even a small amount of the bond will make the utility less than that in an unleveraged situation.

Fig. 6: Optimal bond principal depending on fixed
bond issuance cost (��).

Fig. 7: Optimal bond principal depending on bond
proportional issuance cost rate (�).
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Fig. 5 shows the relationship between the optimal principal and long term mean level (α) of the
interest rate process. When we keep all the other parameters unchanged, the optimal principal
decreases as α increases. It is because the interest payment increases along with an increase of
market interest rate. The increase of interest payment will reduce the attractiveness of the bond.

Fig. 6 shows the optimal bond principal depending on the fixed bond issuance costs (IC). When
the fixed bond issuance costs grow, the corresponding optimal bond principal drops linearly. Since
the fixed costs are assumed very small, the optimal principal changes by a small amount too.

Fig. 7 shows the relationship between the issuance cost rate (κ) and the optimal bond principal.
An increase of κ means an increase in the issuance cost, which in turn means a decrease of the
optimal principals.

Fig. 8 illustrates the relationship between the optimal principal and the clearing fee rate (ϕ). The
optimal principal drops with the increase of ϕ. This is consistent with reality when ϕ increases, it
means a reduction of the recovery rate for bondholder, who will need more interest to compensate,
which in turn, will increase the issuance cost, and finally, reduce the utility.

Fig. 9 shows a weak relationship between the optimal principals and the correlation of firm value
and interest rate.

In order to find how the bond maturity influence the capital structure, we conduct the simulation
on different bond maturities as Fig. 10. From this figure we find that the optimal principal drops
linearly with the increase of the maturity. It is obviously since with the increase of the maturity, the
default risk of the firm grows, then the firm have to issue less bond to survive.

4. Conclusions
Based on the principle of maximizing shareholders’ utility, considering the tax and bankruptcy

risk, this paper constructs an optimal capital structure model with improved endogenous default
barriers under stochastic interest rates. The improvement makes the default barrier a function of
time t, interest rate rt, firm value V�t and bond principal P.

Fig. 8: Optimal bond principal depending on
clearing fee rate (�).

Fig. 9: Optimal bond principal depending on
correlation coefficient between firm value and
interest rate (�).
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Fig. 10: Optimal bond principal depending on bond maturity (�).
The numerical results show that, along with the value of P growing from 0 to maximum, the

utility first increases and then drops. As a result, we can find the optimal bond principal
corresponding the maximum utility of shareholders.

Sensitivity tests involving various parameters show that the optimal bond principal increases
with the drift (μ) and decreases with volatility (σv) of the firm return, the average risk aversion (A�)
of the shareholders, the long term mean level ( α ) of the interest rate process, the fixed bond
issuance cost (IC), the bond proportional issuance cost rate (κ), the clearing fee rate (ϕ) and the
bond maturity (T). An additional test shows that the optimal principal has no apparent relationship
with the correlation coefficient ( ρ ) between the firm value and interest rate. Among all the
parameters, μ , σv , A� , α and T are the key variables in determining the optimal capital structure,
which is consistent with reality.

For tractability, under the risk-neutral probability, the default barrier is defined so that the
expected discounted after-tax firm value at maturity will be below the discount value of the debt
principal but not the debt principal plus the coupon payment. This is because the coupon is affected
by the default information which is determined by the default barriers. The interaction between the
coupon and the default barriers makes it is impossible to get the default barriers’ expression
implicitly or explicitly.

Our model simply assumes that the firm evolves only over one time period. In [20] the authors
developed a model in which the optimal capital structure and debt maturity are jointly determined
for multiple time periods in a stochastic interest rate environment. Incorporating these features
would be another challenging topic for future research.
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