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Abstract. Here, we investigate asymptotic equivalent formulas for finite-time ruin probabilities in a
renewal risk model with a subexponential distribution in this research, in the cases of the negatively
dependent and upper tail independent, respectively. First, we extend the related research results of
Tao Jiang, and Chengguo Weng et al. to the subexponential case, respectively. Thereafter two
precise asymptotic equivalent relations are established, one is the finite-time probability when the
random variables of the claims are influenced by the common subexponential distribution in a
negative way, and another the finite-time ruin probability when the claimsizes are upper tail
independent with the common subexponential distribution.
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independent

1. Introduction
The research of heavy-tailed distribution is an important direction of the risk theory. When the

claim is heavy-tailed distribution, asymptotic estimate theory has been widely studied and
developed since the Cramér-Lundberg theory was established. In order to establish the equivalent
relation under the assumption of heavy tailed distribution, in different circumstances, Many scholars
have achieved fruitful results, such as Hao and Tang[1] studied a renewal model comparable
formula with a subexponential tail of discounted aggregate claims, the asymptotic expression for the
probability of the large claims within renewal risk model with randomly heavy-tailed delay is given
by Wang et al. [2] (refer to[3]), Yang et al. [4] further showed that there was a certain dependent
relationship between the random variable and the random weight, where asymptotic equivalent
formula of the maximum was given, and so on. Based on predecessors' work, in this research, we
investigate two forms of equivalence connections between the negatively dependent and upper tail
independent subexponential distributions.

2. Risk Model
In this research, if we add the constant interest force and renewal theory to the classical risk

model, we can get
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It should be pointed out that the claim  , 1nX n  is common distribution, while it is also
dependent non-negative random variables series. The mean 1EX  is finite. The time interval
 , 1i i  of the arrival of the claim is another independent, identically distributed and non-negative
random variables series. Moreover,  , 1nX n  and  , 1i i  are mutual independence. Then, using
a common constant interest force, the classical risk model can be enhanced to a renewal risk model:
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where u is the initial capital, and c is premium rate which is represented for the premium
charged in the unit time, and  is constant interest force which is correspond to the interest rate and
discount rate. The finite time ruin probability can be described as

( , ) Pr( ( ) 0,0 | (0) )u T U t t T U u      . (2)
The research above is based on the assumption that the claim is distributed independently and

uniformly. Next we study asymptotic expression of the probability under the heavy-tailed
distribution following negatively dependent, and upper tail independent, respectively, in the case of
subexponential distribution.

Definition 1. Definitions of Negatively dependent and Pairwise negatively dependent(See
reference [5]).

If claims iX have a common distribution and are negatively dependent random variables, with a
constant interest force, we have a negatively dependent renewal risk model:
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In the model(3), Chen and Ng. [6]considered that when claims ( , )F    ERV , the probability
is:

0
( ) ( ) ( )

T tu T F ue dm t ， (4)
Wang et al. [2] considered the ruin probability under the circumstances of F C , and Tao[3]

extended it to F  L D , the relation of probability (4) still holds. In the following, we will
investigate the case F S .

Definition 2[7]. If the contiguous function C(Coupla): 1
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the contiguous function C is upper tail dependent; when 0  , the contiguous function C is upper
tail independent.

According to Sklar’s Theorem, upper tail independent can be equivalent to: if  , 1iX i  follows
common distribution and satisfy,
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we call  , 1iX i  for binary upper tail independent[8].
Remark 1 It follows from (5) that
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Remark 2 If the random variable series  , 1iX i  are independent and identical distribution, (5) is
still satisfied, i.e. it satisfies upper tail independent. If the random variable series  , 1iX i  are
negatively dependent, it comes
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Preliminaries

Lemma 1 [9, 10]Let X and  , , 1jY Y j  be mutual independence, and X , jY and XY
respectively follow the distribution F , H and G .
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(1)If F  S , it comes
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(2)If F  S and ( ) ( ( ))H x F x , it comes F H  S and ( ) ( ) ( ) ( )F H x F x H x F x   .
If there exists a constant 0c  , such that ( ) ( )H x cF x ,it

obtains H  S , F H  S and ( ) (1 ) ( )F H x c F x  .
If F  S , and ( / ) ( ( ))H x a G x for any 0a  , XY  S and 1

n
j jX Y S .

(3) If F L and H is non-degenerate into 0 , and ( / ) ( ( ))G x a H x for any given 0a  , we
can get H L .

Lemma 2 [3]In the renewal risk model with constant interest force, claims  , 1iX i  are pairwise
negatively dependent random variable series, which follow common distribution F ,
and F  L D ,then for any 0 0m  ,
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We extend Lemma 2 to subexponential distribution case below.
Corollary 1 We change condition F  L D in lemma 2 to condition F S , and lemma 2 is

also true.
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we need to prove
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When 0 1m  , it is obvious that (4) holds. Assuming that 0 2m  ,clearly,
0 0
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When 01 j l m   , according to the theory of negatively dependent,
1

1 1
1

Pr( , ) Pr( , )
Pr( ) Pr( ) (Pr( ))

j l
j l j l

j l

X e x X e x X e x X x
X e x X x X e x

  

 

  

 
    

     .
We can get
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For any constant m ,
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According to Lemma 1,
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Using the theory of negatively dependent, we have
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Combining equations (10) and (11), it is obtained
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According to (10) and (11), the conclusion is proved.
Lemma 3[11]. If F S , 0  ,there exists a constant coefficient ( )A  such that
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In the investigation of F  L D , Weng et.al. [12] have referred to the following conclusions in
Lemma 4.

Lemma 4[11].Ifnon-negativerandom variable series  , 1iX i  follow distribution iF  L D ,
1,2,i   , and satisfy equation (5):

Pr( , )
lim 0

Pr( )
i j

x
i

X x X x
X x

 


 , 1i  , 1j  ,
it comes

1 2 ( )nF F F x    L D

and

1 1

Pr( ) Pr( )
n n

i i
i i
X x X x

 

   (13)

We extend Lemma 4 to subexponential distribution case below.
Corollary 2 We change condition F  L D in lemma 4 to condition F S , and lemma 4 is

also true.
Proof.When 0 1m  , it is obvious (15)holds. Assuming that 0 2m  ,clearly,
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When 01 j l m   ,According to (6), we can easily see that
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For any constant m ,
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By Lemma 1, we obtain
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Combining (15) and (16), we can get

0 0

1 1

Pr( ) Pr( )i i

m m

i i
i i
X e x X e x  

 

    . (17)

According to (14) and (17), the conclusion is proved.

3. Main results with its Proof
Our main results are Theorem 1 and Theorem 2 below.
Theorem 1.With a negatively dependent constant interest force renewal risk model,

claims  , 1iX i  are pairwise negatively dependent, where the common distribution function F S .
The ruin probability of the finite time T satisfies (4), and the ruin probability of the finite time for
the negatively dependent claims structure is not sensitive.

Theorem 2.With a constant interest force in the renewal risk model, claims  , 1iX i  is the
random variable series which satisfies(5). Its common distribution function F S , then the ruin
probability of the finite time T satisfies
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Proof of Theorem 1.
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If we want to prove (4), we need to prove
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It follows from Corollary 1 and Lemma 3,obtained
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i

i
X e u F ue dm t 



 
.It follows from Lemma 1 that

( ) ( )

1 1

Pr( ) Pr( )i i

N T N T

i i
i i

cX e u X e u 


 

 

   
. Thus, (4) is proved.

Proof of Theorem 2.
Since

( )

0
1

( ) i

N TTT y
i

i
e U t u c e dy X e  


 



   
( )

1

1
i

T N T

i
i

eu c X e












    

,
we have

( ) ( )

1 1

( )i i

N T N T
T

i i
i i

cu X e e U t u X e 
 

 

 

     
.

Then,
( ) ( )

1 1

Pr( ) ( ) Pr( )i i

N T N T

i i
i i

cX e u u T X e u 


 

 

     ，
.

If we want to prove (18), it is suffice to prove
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( )

0
1

( )

1

Pr( ) ( ) ( )

Pr( )

i

i

N T T t
i

i
N T

i
i

cX e u F ue dm t

X e u

 












 



 





                  
(24)

Since

0
0

( )

1 1 1

1 2
1 1

Pr( ) Pr( , ( ) )

Pr( , ( ) ) ( ) ( )

i i

i

N T k

i i
i k N i

N k

i
k i

X e u X e u N T k

X e u N T k I x I x

 




 

   



 

   

   

  

               =
,

because ofCorollary 2 and Lemmas 3, that come

0

0

0

1
1 1 1

0
1

( )
( ( ) ) 0

( ) Pr( , )

( ) ( ) (1 ) Pr( ( ) ) ( )

( ) (1 ) 1 ( ) ( )

i

k k

i k j
k N i j

T t k

k N
TN T t

N T N

I x X e u T

A F ue N T t k dF t

A E F ue dF t









 

 

 




   


 



   

   

   

  





    

    
.

According to Chebyshev inequality, for any 0 0  ,there exists 0N such that
1 0 0
( ) ( ) ( )

T tI x F ue dm t  (25)
and

0

2
1 1

1 1

0

( ) Pr( , ( ) )

Pr( , ( ) )

( ) ( )

i

i

N k

i
k i

k

i
k i
T t

I x X e u N T k

X e u N T k

F ue dm t









 




 

 

  










    

    

. (26)

Combining (25) with (26),one can easily see that

 
( )

0 0
1

Pr( ) 1 ( ) ( )i

N T T t
i

i
X e u F ue dm t 



    (27)

and

 

0

( )

1 1 1

1 1

0 0

Pr( ) Pr( , ( ) )

Pr( , ( ) )

1 ( ) ( )

i i

i

N T k

i i
i k i

N k

i
k i

T t

X e u X e u N T k

X e u N T k

F ue dm t

 






 

  



 

   

  

 

  




              

              

. (28)

As 0 is arbitrary, we have
( )

0
1

Pr( ) ( ) ( )i

N T T t
i

i
X e u F ue dm t 



 
.

By Lemma 1,
( ) ( )

1 1

Pr( ) Pr( )i i

N T N T

i i
i i

cX e u X e u 


 

 

   
,

then (18) is proved.
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