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Abstract. Is mathematics invented or discovered? This question has perturbed philosophers and 
mathematicians alike for centuries. In this manuscript, we propose a novel argument in favor that 
fundamental arithmetic is dis- covered rather than invented using Kurt Gödel’s Incompleteness Theo- 
rem because essentially incompleteness seems to be a property unique to arithmetic and counter-
intuitive to invented systems. We first summarize Gödel’s argument, then argue that arithmetic’s 
essential incompleteness shouldn’t be a property in purely invented systems without it, giving an 
example on how to resolve incomplete systems in those systems and argue that arithmetic is to 
some extent discovered because of this difference in property. We also conjecture that any invented 
system that could be proven to be essentially incomplete with a similar logic to Gödel’s method can 
express arithmetical relationships in some form. Finally, we account for some objections to discovery. 

Keywords: philosophy of math, Godel, Godel numbering, theories of arithmetic, axiomatizable 
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1. Introduction 
I first encountered the question “Is math discovered or invented?” in a philosophy and math club 

joint meeting earlier this year. The implied clash between the two sides is whether mathematical truths 
depend on human intelligence. There is no question that the language we use to describe arithmetic 
is invented. However, through this language, are we creating or merely interpreting? Before the 
meeting, because of my skepticism toward universal objectivity, I had been pre- disposed to favor 
that math was invented instead of discovered. However, that opinion was swayed by the end of the 
meeting. 

Philosophers and mathematicians throughout history have attempted to answer variations of this 
question. The ancient Greeks mostly agreed that it is discovered, most notably the Pythagoreans who 
believed everything is numbers and Plato who believed that mathematics could bridge the real world 
and the abstract world of forms (Barker 1994). Eugene Wigner, with his famous phrase, “the 
unreasonable effectiveness of mathematics,” argued that the sheer 

wide and sometimes unexpected applicability of mathematical concepts in other disciplines and 
the real world (Wigner 1995). Even babies have an innate number sense (Dehaene 2011). Since we 
are arguing on the subjective influence of humans, we could also imagine if an alien civilization could 
have a different mathematical system. It seems almost impossible that they won’t have some way or 
another of expressing natural numbers. 

On the other hand, people who believe that math is invented could argue that the specific way we 
“do” math is not unique. Alien civilizations might have some notation of numbers, which might not 
be separate and abstract concepts as our numbers are but rather depend on the objects they describe. 
It is just like how a baby might understand that three M&Ms is better than two M&Ms but might not 
find a shared property between three M&Ms and three buildings (Guerrini 2023). They definitely 
would not share our mathematical language or might not even have fields corresponding to our 
calculus or trigonometry. In addition, if math is discovered and thus universal, then why does the way 
we build our fundamental mathematical system change over the ages? Our current axioms and logical 
theory defining math differs greatly from how our ancestors understood math two thousand years ago. 
Wouldn’t that suggest that math is subjective and subject to our change? There are also mathematical 
concepts that depend on humans, such as the Erdos Number (Goffman 1969), which even the most 
adamant of the “discoverists” would have to concede is more invented than not. 
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Both sides of the argument were fascinating, but I was leaning more towards invention. However, 
then Gödel’s Incompleteness Theorem was brought up. In the 1920s, Kurt Gödel stunned the 
mathematical world with his incompleteness theorems, proving that math is condemned to be 
incomplete, that there will always be unprovable but true sentences in any consistent logical theory 
capable of arithmetic, ruining the dreams of Bertrand Russell and Alfred Whitehead of constructing 
a perfect mathematical system. 

The incompleteness theorem proved that our understanding of math could only be hopelessly 
imperfect. It was and will always be a bleak conclusion and it felt...wrong. However, out of that 
bleakness and intense counter-intuition intuition sparked. Wouldn’t that hopeless imperfection and 
the Book of Math’s stubborn insistence on never being read completely suggest that it is above our 
understanding? And if it is above our understanding, wouldn’t that imply that we cannot invent it? It 
isn’t that arithmetic isn’t consistent, but we just cannot demonstrate its consistency. The fact that 
arithmetic is a sufficient condition for incompleteness further convinced me of its uniqueness. 

Later, with more research, J.R. Lucas and Roger Penrose had made a similar argument by using 
the incompleteness of math to argue that artificial intelligence could never think like a human. Every 
machine we have could be replaced by a Turing machine. The Turing Machine, though not a logical 
theory by itself, exhibits a property similar to incompleteness in the unsolvability of the halting 
problem. (Burkholder 1987) Computers and by extension artificial intelligence are incomplete.  
Lucas and Penrose argues that our minds are not machines because we don’t have this fundamentally 
“unprovable sentence” in our minds (Penrose 2016). This argument has a lot of potential problems 
because of how little we know of the nature of our minds and consciousness. However, our logic is 
similar to his and we shall argue that the incompleteness of math suggests that it is partly discovered 
rather than purely invented because purely invented systems would lack the incomplete property that 
arithmetic systems possess. 

2. Proof of Gödel’s Incompleteness Theorem 
Here we shall give a short summary of Gödel’s process that will tie into my argument on the 

“discoveredness” of mathematics. 

2.1 Gödel Numbering 
Gödel’s proof relies on forming a injection from the set of theorems in an arithmetic system onto 

the set of all natural numbers. Every arithmetical sentence could be expressed with a finite sequence 
of logical symbols from a limited set. He then assigned each symbol a representative number, for 
example in Table 1 (Davey 2023) 

Table 1: Arithmetical Symbols to Gödel Number Representative 

 
symbol meaning number 

0 0 0 
′ successor (e.g.0′  = 1) 1 
+  plus 2 
· multiply 3 

=  equal 4 
V and 5 
Λ or 6 
一 not 7 
二 there exists 8 
A for all 9 
( left parentheses 10 
) right parentheses 11 
vi ith variable 11 + i 
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This would effectively map every arithmetical sentence to an ordered set of numbers. For example 
the claim 1 + 1 = 2 or 0′ + 0′ = 0′′ would be represented as (0, 1, 2, 0, 1, 4, 0, 1, 1). We could then 
derive the theorem’s so-called “Gödel number” by raising the ith prime to the power of the 
representative number of the ith symbol in the theorem. In the example 1 + 1 = 2, its Gödel number 
would be 20 · 31 · 52 · 70 · 111 · 134 · 170 · 191 · 231 = 10296954525. Though it seems way too 
aggrandizing to express an expression as simple as 1 + 1 = 2 with an 11-digit integer, this means that 
every single expression using these 11 symbols and finite variables could be encoded into a single 
number. 

2.2 Diagonalization Lemma 
Through assigning a unique number for statements and even proofs, Gödel was able to prove the 

existence of logical statements that are equivalent to statements about their own Gödel numbers 
known as the Fixed Point Theorem, or the Diagonalization Lemma (Davey 2023): 

Theorem 1 (Diagonalization Lemma). For any unary formula ψ(x) definable in the language of 
arithmetic, there exists a sentence S in the language of arithmetic such that: S ψ(⌜S ⌝) where ⌜S ⌝ 
denotes the Gödel number of sentence S. 

This is crucial in his proof as it allows the creation of pseudo self-referential statements about the 
statement’s own Gödel number. It is because logical sentences in arithmetic can form an injection 
onto the natural numbers and be processed in its own system that this is possible. 

2.3 Definability of Unprovableness 
With the Diagonalization Lemma, we only need to prove that the property of unprovableness is 

definable in arithmetic to substitute it for ψ(x) and get the Gödel sentence. Gödel was in fact not only 
able to prove that unprovability was definable in arithmetic, but in all logical theories where the 
axioms are Turing enumerable (Gödel 1931): 

Theorem 2 (Definability of Unprovableness). For every axiomatizable theory T, the relation 
ProvableT (z) is definable. 

The reasoning behind this theorem is simple. We only need to mechanically list out all the possible 
proofs in theory T and look if there exists a proof for which z is the conclusion.  With this in hand, 
we can finally get the Gödel sentence. 

2.4 Gödel’s First Incompleteness Theorem 

2.4.1 Definition of Incompleteness 
System T is complete, or negation complete iff for every valid logical sentence S in system T, (T 

⊢ S) ∨ (T ⊢ ¬S). 

2.4.2 The Gödel Sentence 
The Gödel sentence is as follows (Gödel 1931): 

G ↔ ¬ProvableT (⌜G⌝)                   (1) 

In other words, G is equivalent to its own unprovableness. Gödel assumed that the Gödel 
sentence was true because its falsehood would lead to a contradiction. If G is not unprovable in system 
T, it would be provable and imply its truth in T. But we have established its falsehood, and thus there 
is a contradiction. G could only be true and unprovable. Math is thus incomplete. 

In fact, Gödel proved that in any formal system F that is capable of performing a certain amount 
of arithmetic there exists true statements that could not be proven. He derived a mechanical method 
to construct a true but unprovable sentence in any arithmetical theory with Turing enumerable axioms. 
In other words, arithmetic capability is a sufficient condition for incompleteness. Arithmetic is 
essentially incomplete. 
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2.5 Significance of Gödel’s Incompleteness Theorems 
In essence, Gödel’s proof utilizes the inherent order and universality of the natural numbers to 

create a mechanical method for quasi self-reference. If system I is not capable of arithmetic, it 
wouldn’t have the capability of constructing semi-self-referential sentences such as the Fixed Point 
Theorem. In other 

words, we won’t have a mechanical method to construct a true but unprovable sentence for purely 
invented systems that will exist no matter how many axioms we add to the system. This unpurgeable 
persistence of incompleteness, known as essential incompleteness, is fundamental to the nature of 
arithmetic itself. 

3. Why Arithmetic’s Incompleteness Might Imply that Math is Discovered 

3.1 The Complete Baby Arithmetic 
One valid question is whether all arithmetical systems are incomplete.  The answer is no. 

Consider the following quantifier and connective free system Baby Arithmetic based on the following 
schemas where ζ and ξ can be systematically replaced with numerals to derive the set of all axioms 
of Baby Arithmetic: 

Schema 1. 0  Sζ 
Schema 2. Sζ = Sξ → ζ = ξ 
Schema 3. 0 + ζ = ζ 
Schema 4. ζ + Sξ = S(ζ + ξ) 
Schema 5. 0 × ζ = 0 
Schema 6. ζ × Sξ = ζ × ξ + ζ 
where Sx indicates the successor of x. Note that these 6 schemas are not by themselves the axioms 

of Baby Arithmetic, but the set of all numerical replacements with the schemas. Baby Arithmetic is 
negation complete. It can prove the equality of every equal equation and prove the inequality of every 
unequal equation in its language because its language is purely based on logical connectives 
connecting finite truth variables. With the rules of inference and truth tables, like classic propositional 
logic, we can evaluate the truth value of every claim mechanically. 

However, Baby Arithmetic cannot express numerical generalizations. It can only determine the 
truth value of instance equations. Its stronger version, known as Robinson Arithmetic, replaces all of 
Baby Arithmetic’s schemas with numerical generalizations (e.g. (Ax)0  Sx in place of Schema 1). 
However, Gödel’s Proof could run in Robinson Arithmetic and all stronger arithmetics. It is thus 
incomplete. 

This is fascinating, because this means that theories that could express only instances of arithmetic 
truth could be complete but any system that seeks to ex- press generalizations or endeavor to uncover 
the laws of arithmetic truth would be inevitably incomplete. 

Next, we shall first give my definition of a purely invented system and any system that does not 
fall within this definition will be at least a partially dis- covered system. 

3.2 Definition of a Purely Invented System 
The most important question in this matter is: how do you extinguish invention from discovery? 

One could argue that everything we express is invented because they all result from human language 
and human understanding. When we collide two particles together to get a split second of a heavy 
element, are we inventing that element? Or discovering it? Probably discovering it. In some sense, 
invention has more “freedom” than discovery. With discovery, there seems to be a right or wrong, a 
criterion of success. Invention is arbitrary and its derivations are restricted by human concept and 
definition. However, though unlikely, we can still unknowingly invent something and later find out 
that it is discovered. 
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A purely invented formal system is a system where all the axioms are defined by, relies on and are 
subject to human intelligence or other invented systems except logic. 

Inevitably, since it is a formal system, it will include logic, or classic propositional logic and the 
rules of inference to create truth-preserving proofs and theorems. 

3.3 Could Invented Systems be Incomplete 
Invented Systems could very well be incomplete. In fact, it is very likely that an invented 

system is incomplete simply because it’s not strong enough. For example, take the invented system 
I1 with similar language as arithmetic but instead of + and × we have a single operator ◦ which is 
defined by the following four schemas: 

Schema 7. 0  Sζ 
Schema 8. Sζ = Sξ → ζ = ξ 
Schema 9. 0 ◦ ζ = Sζ 
Schema 10. Sζ ◦ Sξ = ζ ◦ ξ 
Schema 11. ζ  0 → ζ = Sn (0) 
where Sn (0) denote operand S applied a random n times to 0. I1 ’s axioms are derived by 

substituting numerical instances into these Schemas. I1 ’s language is quantifier and connective free 
and contains the logical symbols ¬ , → , (, ), 0, =,S. 

I1 is similar to arithmetic but evidently a completely different system. 
Theorem 3. I1 is incomplete. 
Proof. I1 ⊬ (ζ ◦ 0 = Sζ) V I1 ⊬ (ζ ◦ 0  Sζ) 
We can construct two interpretations, both satisfying the axioms of I1 , but in one of them ζ ◦ 0 = 

Sζ would be true, while in the other it would be false.  Consider the following interpretation of I1 in 
the language of arithmetic: 

0 一 0, 
S 一 S , 
ζ ◦ ξ = |ζ - ξ| + 1 
It can be easily shown that this always satisfies the schemas of I1 within the domain of arithmetic. 

Therefore it is a valid interpretation of I1 . Within this interpretation, ζ ◦ 0 = |ζ - 0| + 1 = Sζ, so it is 
true. 

Now consider this different interpretation of I1 in the language of arithmetic: 
0 一 0 
S 一 S 

 
It is evident that Schema 7 & 8 still hold.  Schema 9 holds because 0 is always less or equal to ξ 

within the domain of the natural numbers. Schema 10 holds in both cases. So this is also a valid 
interpretation of I1. However, in this interpretation, ζ 。0 = Sζ does not hold for any element in the 
domain for ζ except 0. Therefore, it is false. 

Since there exists an interpretation of I1 where ζ ◦ 0 = Sζ is true and also one where it is false, ζ ◦ 
0 = Sζ is unprovable in I1 .                      

To solve this problem, we could add another schema to system I1 to form I2 . 
Schema 12. ζ ◦ 0 = Sζ 
Theorem 4. I2 is complete. 
Proof. Since Schema 11 confines all elements in I2 to essentially whole numbers, this additional 

schema would allow us to evaluate all 。operations to a single number and since I2 is quantifier free 
and could only contain instance equations and parentheses, we could eventually simplify every 
parentheses in order and eventually both sides of an equation to a single number and see if they are 
the same to evaluate the equation’s truth value. 
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As can be seen by this system, invented systems could be incomplete, but as we add unprovable 
but true claims to the set of axioms to build a slightly stronger system, completeness could sometimes 
be achieved. However, the problem with arithmetic and Gödel’s proof is that no matter how many 
axioms you 

try to add to an arithmetic-equipped system, it will always be incomplete. In- vented systems could 
be incomplete, but they are not guaranteed incompleteness in the same way arithmetic is guaranteed 
essential incompleteness in which any consistent axiomatizable extension of it is also incomplete. 

More broadly, we can imagine that we have a purely invented system I with purely arbitrary 
axioms that is not capable of arithmetic. Is I complete? If we have a false statement S in I, we could 
simply enumerate the theorems the theorems of I through the rules of inference until we come across 
S or ¬S. Hypothetically, even if we go on for billions of billions of theorems and still don’t come 
across S or ¬S , I wouldn’t be provably incomplete in the same manner as arithmetic. We can also 
just add S or ¬S to the set of axioms if they preserve consistency to make a stronger, “more complete” 
system. 

3.4 Why Essential Incompleteness Indicates Discovery 
Imagine you are a sculptor, inventing and creating miniature statues out of mud. You would expect 

that you could control everything about your creations. You can move their arms, move their legs, 
anything you want.  If you discover a hole in a statue’s body, you can just use some additional mud 
to patch it up. However, what if when you craft it to resemble one specific god, you realize that you 
can never create a “complete” sculpture? When you patch up one hole on its leg, another appears on 
its arm? When you patch up that hole, another is discovered on its stomach. No matter how hard you 
try to fix your effigy, there always seems to at least a hole appearing somewhere on its body. There 
is nothing you could do that could fix that figurine and you discover that this hole, this horrific and 
perpetual imperfection, is conceptually fundamental to the effigy itself. It doesn’t affect any other 
shape you create out of the same mud, but only those with the likeliness of this specific deity. Aside 
of being crept out by Lovecraftian strangeness, would you admit that you are discovering, not 
inventing, this strange phenomenon? Math is that god whose resemblance we are trying to capture 
with our mud, our language and logical system. 

The inventor indicates some degree of control over the invented that is contradicted by the 
untameableness of arithmetic. Gödel’s theorems did not just prove the incompleteness of arithmetic, 
but any extension of arithmetic. This unique property marks mathematics apart from other existing 
systems.  But that raises the question, is arithmetic really unique in being essentially incomplete? 
What if we can invent completely original systems that are also essentially incomplete? That would 
threaten the entire argument. 

3.5 Essentially Incomplete Invented Systems 
So could invented systems be essentially incomplete? It is possible. The obvious method is to 

construct a proof similar to Gödel’s that could consistently con- 
struct an unprovable but true statement in a system that could be expanded to any extensions of 

that system. The best example of such a proof would be the halting problem which uses the 
diagonalization method like Gödel. The Turing Machine, though it is not a strict logical theory, 
exhibits a similar phenomenon as mathematics because a Turing Machine cannot figure whether any 
given Turing Machine would halt. 

So what if we try to apply Gödel’s method to any invented system?  We would want to construct 
a true but unprovable sentence in that system using the fundamental elements of that system. There 
must be a few conditions to be met for Gödel’s method to work. 

1. There must be a “Gödel Numbering” function. There must be a mechan- 
ical way to inject all valid statements onto the constant domain of IG . 
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2. There must be a theorem similar to the Diagonalization Lemma.  The system must be capable 
of processing functions about its elements that indicate statements about the sentence those elements 
correspond to and specifically its own corresponding element. 

In these theorems, constants are meant to be parallel to arithmetic’s numbers, as in terms either 
originally an element (0 in mathematics) or formed through applications of unary functions (such as 
S) of those original elements (S0, SS0, etc). From the first condition, we know that all invented 
systems with a limited number of generated constants cannot be proven incomplete using Gödel’s 
method because in any logical theory, the number of logical sentences is infinite and cannot form an 
injection onto a finite set of constants. 

So what about systems with infinite constant elements?  Since this is an invented system, it would 
make sense if the elements are Turing enumerable. But first, we shall define two generalized versions 
of Gödel Numbering and the Diagonalization Lemma necessary for Gödel’s proof: 

Assumption 1 (Generalized Gödel Numbering). In a logical theory I with any language, if there 
exists a Turing computable method to map any sentence in I to a constant operand of I, then we call 
the operand that sentence S maps to using this method the ”Gödel Expression” of S, denoted by ⌜S 
⌝ . 

Assumption 2 (Generalized Diagonalization Lemma). In a logical theory I with any language 
where Gödel Expression exists, if for every valid unary formula ϕ(x) definable in the language of I 
where x is an operand, there exists a sentence S in the language of I such that: S ↔ ψ(⌜S ⌝), then 
system I satisfies the Generalized Diagonalization Lemma. 

Since we know from earlier that unprovableness is definable in all axiomatizable systems and our 
invented system is no doubt one, we can know that if there exists in theory I both Gödel Expression 
and the Generalized Diagonalization Lemma is true in I, then I can be proven to be incomplete using 
Gödel’s method, constructing a Gödel sentence within the language of I. 

3.6 Essentially Incomplete Invented Systems Can Express Arithmetic 
As mentioned earlier, though the Turing Machine is not a logical theory, it exhibits a similar 

property to incompleteness in the unsolvability of the halting problem. However, another property of 
the Turing Machine is that it can express and calculate arithmetic and we wonder if all provably 
incomplete systems can do the same. 

Conjecture 1. If a purely invented logical theory has Gödel Expression and satisfies the 
Generalized Diagonalization Lemma, then it could express arithmetical relationships. 

Let’s assume that IG can be proven to be incomplete using Gödel’s method. That would mean that 
there exists within IG a Turing computable function to map every sentence in IG to an element in IG . 
We also know that if we use Gödel’s mapping process, there is also a unique Gödel number to every 
sentence. The set of all sentences in IG should form an injection onto both the set of natural numbers 
and the set of all elements of IG . Through this bridge, we can form a bijection between the natural 
numbers to the elements of IG . 

Through this method, we have found a way to define specific numbers in IG. If we can find a 
function definable in IG that could define addition and multiplication between these “numbers,” we 
can then prove Conjecture 1. This means we would have a function that would take in two constants 
in IG, one whose corresponding Gödel expression in Assumption 1 mapped through Gödel numbering 
is 2 and another mapped to 3. That function would then produce a constant whose Gödel expression 
mapped through Gödel numbering is 5 and it would be true for all combinations of addition, same for 
multiplication. We have been unable to find such a function as of right now. The main obstacle would 
be to utilize Assumption 2 in some way to aid in that endeavor because Assumption 2 is a strong 
statement whereas Assumption 1 is the weaker one. We have thought of methods such as creating a 
slightly different system for Gödel numbering that could make addition or multiplication easier to be 
expressed in the language but there hasn’t been any fruition in that direction currently. 
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3.7 Implications of Conjecture 1 
If we have successfully proved Conjecture 1, what does it signify? It would mean that arithmetic 

is now not only a sufficient condition for essential incomplete- ness, but also a necessary condition, 
granting it truly unique and fundamental status in our logical systems. We would think we are still 
inventing the systems and the axioms themselves, but what we are actually doing is inventing another 
language, another medium for arithmetical laws and properties to manifest (Tall, D). It would mean 
that any essentially incomplete systems that utilize 

logic and human language are in essence just another interpretation of arithmetic with extra steps. 
Math’s unique imperfection would seem fundamental to the unfathomability of the universe itself and 
thus prove that under our current definitions, it is most definitely discovered rather than invented. 

4. Responding to Some Arguments Against the Discovery of Math 
A common argument cites the triviality of some mathematical concepts such as the Erdos number 

and language as evidence for the invention of math. This argument does not go contrary to the point 
we are making. Though the concept of arithmetic is discovered, we could still have invented some 
mathematical concepts and the mathematical language, but we invented them on the basis of and 
within a discovered arithmetic. We discovered metal but we invented swords and spears. Therefore, 
we ought to separate the language of math from the abstract concept of math itself. The former is 
invented whereas the latter discovered. 

For arguments on the “fickleness” of mathematics, it is true that our definitions of arithmetic have 
changed throughout the centuries but that only means that our way of interpreting math has changed 
and become more accurate. As we have stated, the language and axioms that we use to define the 
system of arithmetic are not math itself but invented interpretations and what Gödel proved was that 
we can never invent an interpretation that can fully capture the concept and system of math. The 
system itself is discovered but what for and how we choose to use the system is invented. 

As for arguments on a different “alien” mathematics or lack of mathematical concepts, they will 
definitely have a completely different system or even none at all, but no matter what system or 
language they come up with, we know that they also cannot also “prove” every mathematical “truth,” 
whatever their counterparts are. If they are similar rational beings capable of logical reasoning and 
creating definitions for systems, then incompleteness still stands. Conjecture 1 in some ways solves 
that problem completely as it broadens the definition of “arithmetical systems” to any essentially 
incomplete systems. We trust that aliens would be just as exasperated with math as we are. At the end 
of the day, we are all mortals chained to not the essence, but the manifestations of the universe. 

5. Conclusion 
In this paper, we have summarized Gödel’s proof of the essential incomplete- ness of arithmetic, 

in order to aid the understanding of why math is discovered rather than invented because of its unique 
essential incompleteness in contrast 

to other purely invented systems. We have also conjectured that the ability to express arithmetic 
is not only a sufficient condition to essential incompleteness in a logical theory, but also a necessary 
one. Finally, under our new model, we have answered some common arguments for math is invented. 
For the future study of this topic, we would hope to prove or disprove our conjecture that any system 
that could be proved essentially incomplete using a similar method to Gödel would be capable of a 
certain degree of arithmetic. 

When I first divined this connection between Gödel and Math’s discovered- ness, I saw in my 
mind a metaphor for the relationship this revelation revealed. Math is an abstract painting hidden 
behind the dark wall of concrete reality. Our ancestors poked tiny holes in the wall to gaze upon 
fractions of the painting from different angles. Since we cannot reach the painting, we used our minds 
to create our own “models” of the painting of math based on our observations through our peepholes. 
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These models are the systems of math that we have constructed over the ages. As time goes on, our 
collective intelligence enlarges old holes and pokes new holes. We do invent. The holes that we poke 
and the models that we build are our inventions, attempts to understand this painting further. Through 
more knowledge of the painting, we are able to construct newer models that can more accurately 
describe the painting.  What Gödel proved was that we can never replicate the painting of math 
behind the dark wall of reality. We can never bring down the dark wall of reality and expose the 
painting of math to light entirely. This can only mean that this painting does not belong merely in the 
material world. If it is something we invented, then we ought to at least know that it could be 
understood, not know that we can never reach it. There will always be an impenetrable distance 
between us and mathematics, but that is precisely the reason why it is a discovered wonder of the 
universe. 
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